• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

恒阻锚杆支护机理数值分析

唐春安, 陈峰, 孙晓明, 马天辉, 杜艳红

唐春安, 陈峰, 孙晓明, 马天辉, 杜艳红. 恒阻锚杆支护机理数值分析[J]. 岩土工程学报, 2018, 40(12): 2281-2288. DOI: 10.11779/CJGE201812016
引用本文: 唐春安, 陈峰, 孙晓明, 马天辉, 杜艳红. 恒阻锚杆支护机理数值分析[J]. 岩土工程学报, 2018, 40(12): 2281-2288. DOI: 10.11779/CJGE201812016
TANG Chun-an, CHEN Feng, SUN Xiao-ming, MA Tian-hui, DU Yan-hong. Numerical analysis for support mechanism of constant-resistance bolts[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2281-2288. DOI: 10.11779/CJGE201812016
Citation: TANG Chun-an, CHEN Feng, SUN Xiao-ming, MA Tian-hui, DU Yan-hong. Numerical analysis for support mechanism of constant-resistance bolts[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2281-2288. DOI: 10.11779/CJGE201812016

恒阻锚杆支护机理数值分析  English Version

基金项目: 国家自然科学基金面上项目(41572249); 国家重点基础研究发展计划项目(“973”)(2014CB047100); 中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室开放基金资助项目(SKLGDUEK1825)
详细信息
    作者简介:

    唐春安(1958- ),男,博士,教授,主要从事岩土体破裂过程数值分析与微震监测等方面的教学和科研工作。E-mail: tca@mail.neu.edu.cn。

  • 中图分类号: TU45

Numerical analysis for support mechanism of constant-resistance bolts

  • 摘要: 为了研究恒阻锚杆的拉伸力学性能,采用RFPA软件对恒阻锚杆进行拉伸数值试验,试验结果表明,恒阻锚杆拉伸断裂后塑性应变最大值是弹性应变最大值的12倍,并且在塑性变形过程中应力值在28.01~38.71 MPa范围内波动,且波动较为稳定,数值试验结果与何满潮院士室内试验结果吻合度较高,验证了数值试验方法的准确性和可靠性。以此为依据,进一步采用数值试验方法研究荷载作用下恒阻锚杆和围岩相互作用原理,分析锚固岩体的受力特征和变形破坏特征,并对比分析传统锚杆和恒阻锚杆的支护效果,通过对比分析可知,恒阻锚杆的支护效果优于传统锚杆,为易发生大变形破坏的软岩及冲击地压控制提供了有效途径。
    Abstract: In order to study the tensile mechanical properties of constant-resistance bolts, the numerical simulation of the tensile strength of a constant-resistance bolt is carried out by using the RFPA software. The experimental results show that the maximum plastic strain is 12 times the maximum value of elastic strain after constant-resistance tensile fracture, and the stress value fluctuates in the range of 28.01~38.71 MPa during plastic deformation, and the fluctuation is stable. The results of numerical experiments are in good agreement with Academician He Manchao’s laboratory test results, which verifies the accuracy and reliability of the numerical test method. Based on this, the numerical method is used to study the interaction principle of the constant-resistance bolt and the surrounding rock under loading and to analyze the stress and deformation and failure characteristics of anchored rock mass. The support effects of the traditional and constant-resistance bolts are comparatively analyzed. It is shown by the test results that the support effect of the constant-resistance bolt is better than that of the traditional one, which provides an effective way to control the soft rock with large deformation damage and rock burst.
  • [1] KANG H, WU Y, GAO F, et al.Fracture characteristics in rock bolts in underground coal mine roadways[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 62(5): 105-112.
    [2] JALALIFAR H.A new approach in determining the load transfer mechanism in fully grouted bolts[D]. Wollongong: University of Wollongong, 2006.
    [3] 侯朝炯. 巷道围岩控制[M]. 徐州: 中国矿业大学出版社, 2013: 186-194.
    (HOU Chao-jiong.Ground control of roadways[M]. Xuzhou: China University of Mining &Technology Press, 2013: 186-194. (in Chinese))
    [4] 王阁. 预应力让压锚杆的数值模拟研究及其应用[D]. 济南: 山东科技大学, 2007.
    (WANG Ge.Numerical simulation of pre-stressed yield bolt support and its application[D]. Jinan: Shangdong University of Science and Technology, 2007. (in Chinese))
    [5] 王连国, 李明远, 王学知. 深部高应力极软岩巷道锚注支护技术研究[J]. 岩石力学与工程学报, 2005, 24(16): 2890-2893.
    (WANG Lian-guo, LI Ming-yuan, WANG Xue-zhi.Study on mechanisms and technology for bolting and grouting in special soft rock roadways under high stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2890-2893. (in Chinese))
    [6] 何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002: 21-24.
    (HE Man-chao, JING Hai-he, SUN Xiao-ming.Soft rock engineering mechanics[M]. Beijing: Science Press, 2002: 21-24. (in Chinese))
    [7] 柏建彪, 王襄禹, 贾明魁. 深部软岩巷道支护原理及应用[J]. 岩土工程学报, 2008, 30(5): 632-635.
    (BAI Jian-biao, WANG Xiang-yu, JIA Ming-kui.Theory and application of supporting in deep soft roadway[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 632-635. (in Chinese))
    [8] 李俊平, 连民杰. 矿山岩石力学[M]. 北京: 冶金工业出版社, 2011.
    (LI Jun-ping, LIAN Min-jie.Mine rock mechanics[M]. Beijing: Metallurgical Industry Press, 2011. (in Chinese))
    [9] 蔡美峰, 何满朝, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2002.
    (CAI Mei-feng, HE Man-chao, LIU Dong-yan.Rock mechanics and engineering[M]. Beijing: Science Press, 2002. (in Chinese))
    [10] JAGER A J.Two new support units for the control of rockburst damage[C]// Proceedings of the International Symposium on Rock Support. Sudbury, 1992: 621-631.
    [11] CHARETTE F, PLOUFFE M.Roofex-results of laboratory testing of a new concept of yieldable tendon[J]. Deep Mining, 2007(7): 395-404.
    [12] LI C C.A new energy absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 396-404.
    [13] VARDEN R, LACHENICHT R, PLAYER J, et al.Development and implementation of the garford dynamic bolt at the Kanowna Belle mine[C]// 10th Underground Operators’ Conference. Launceston: Australian Centre for Geomechanics, 2007: 395-404.
    [14] 何满潮, 钱七虎. 深部岩体力学基础[M]. 北京: 科学出版社, 2010: 223-234.
    (HE Man-chao, QIAN Qi-hu.The basis of deep rock mechanics[M]. Beijing: Science Press, 2010: 223-234. (in Chinese)
    [15] 何满潮, 王炯, 孙晓明, 等. 负泊松比效应锚索的力学特性及其在冲击地压防治中的应用研究[J]. 煤炭学报, 2014, 39(2): 214-221.
    (HE Man-chao, WANG Jiong, SUN Xiao-ming, et al.Mechanics characteristics and applications of prevention and control rock bursts of the negative Poisson's sratio effect anchor[J]. Journal of China Coal Society, 2014, 39(2): 214-221. (in Chinese)) .
    [16] 李晨, 何满潮, 宫伟力. 恒阻大变形锚杆负泊松比效应的冲击动力学分析[J]. 煤炭学报, 2016, 41(6): 1393-1399.
    (LI Chen, HE Man-chao, GONG Wei-li.Analysis on impact dynamics of negative Poisson’s sratio effect of anchor bolt with constant resistance and large deformation[J]. Journal of China Coal Society, 2016, 41(6): 1393-1399. (in Chinese))
    [17] TANG C A.Numerical simulation of progressive rock failure and associated seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 249-261.
    [18] TANG C A, KAISER P K.Numerical simulation of cumulative damage and seismic energy release in unstable failure of brittle Rock: part I Fundamentals[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 113-121.
    [19] 唐春安. 岩石破裂过程数值试验[M]. 北京: 科学出版社, 2003.
    (TANG Chun-an.Numerical experiments of rock failure process[M]. Beijing: Science Press, 2003. (in Chinese))
    [20] TANG C A, YANG W T, FU Y F, et al.A new approach to numerical method of modelling geological processes and rock engineering problems: continuum to discontinuum and linearity to nonlinearity[J]. Engineering Geology, 1998, 49(3/4): 207-214.
    [21] 梁正召, 杨天鸿, 唐春安, 等. 非均匀性岩石破坏过程的三维损伤软化模型与数值模拟[J]. 岩土工程学报, 2005, 27(12): 1147-1152.
    (LIANG Zheng-zhao, YANG Tian-hong, TANG Chun-an, et al.Three-dimensional damage soften model for failure process of heterogeneous rocks and associated numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1147-1152. (in Chinese))
    [22] JIA P, TANG C A.Numerical study on failure mechanism of tunnel in jointed rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 500-507.
    [23] 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308.
    (HE Man-chao, GUO Zhi-biao.Mechanical property and engineering application of anchor bolt with constant resisitance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 31(7): 1297-1308. (in Chinese))
    [24] HE M C, GONG W L, WANG J, et al.Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67(1): 29-42.
    [25] 李庶林, 尹贤刚, 王泳嘉, 等. 单轴受压岩石破坏全过程声发射特征研究[J]. 岩石力学与工程学报, 2004, 23(15): 2499-2503.
    (LI Shu-ling, YIN Xian-gang, WANG Yong-jia, et al.Studies on acoustic emission characteristics of uniaxial compressive rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2499-2503. (in Chinese))
    [26] 徐涛, 唐春安, 王述红, 等. 岩石破裂过程围压效应的数值试验[J]. 中南大学学报 (自然科学版), 2004, 35(5): 840-845.
    (XU Tao, TANG Chun-an, WANG Shu-hong, et al.Numerical tests on confining pressure effect in rock failure process[J]. Journal of Central South University (Science and Technology), 2004, 35(5): 840-845. (in Chinese))
  • 期刊类型引用(13)

    1. 杨东东. 基于孔压静力触探的土层分类研究. 中国新技术新产品. 2024(04): 102-104 . 百度学术
    2. 马昌慧,陈义平,郭峰,李栋广. 浅析基坑工程的优化设计方法. 工程勘察. 2024(04): 26-30 . 百度学术
    3. 魏军. 大型自升式海工平台桩靴地基土工程特性试验研究. 江苏建筑. 2024(02): 96-100+120 . 百度学术
    4. 李伟. 软基处理PST桩复合地基加固机理及CPTU验证. 山西建筑. 2024(11): 76-80+85 . 百度学术
    5. 时文峰,丁川,仇涛,童立元,王逸凡,马海洋. 地下工程预制梁钢筋骨架安装与成型技术研究. 建筑技术. 2024(16): 1924-1928 . 百度学术
    6. 肖乾,袁颖,汪婷. 基于系统聚类算法的CPT土体分层试验研究. 湖北理工学院学报. 2024(06): 36-41 . 百度学术
    7. 卢云龙,戴正彬,汤国毅. 基于静力触探对深基坑突涌区地层扰动的分析. 土工基础. 2023(01): 157-160 . 百度学术
    8. 丁剑桥. 基于静力触探的桩基承载力及数值模拟分析. 安徽建筑. 2023(03): 135-136+173 . 百度学术
    9. 吴早生,胡春东,白浩东,沙鹏,黄曼,王天佐. 静力触探深度与垂直度实时智能监测系统的应用研究. 中国新技术新产品. 2023(04): 90-93 . 百度学术
    10. 曹振平,曾彪,张雨波,孟韬,周盛生,谷军. 基于CPTU的长江河漫滩相软土夹层分布特征与渗透特性评价. 勘察科学技术. 2023(03): 43-48+64 . 百度学术
    11. 吴早生,白浩东,胡春东,沙鹏,黄曼,张鑫,王天佐. 基于静力触探数据的绍兴平原地区土层参数分析评价. 岩土工程技术. 2023(06): 692-699 . 百度学术
    12. 郭全元,钟仕兴,肖旺. 基于孔压静力触探(CPTU)及扁铲侧胀试验(DMT)南沙软土力学特性研究. 广东土木与建筑. 2022(06): 26-29 . 百度学术
    13. 周燕国,王智男,马强,梁甜,陈云敏. ZJU-400离心机机载微型CPTu装置研制与性能测试. 岩土工程学报. 2022(S2): 11-15 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 17
出版历程
  • 收稿日期:  2017-12-07
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回