• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地表移动荷载对既有地下隧洞动力影响解析研究

曹志刚, 孙思, 袁宗浩, 蔡袁强

曹志刚, 孙思, 袁宗浩, 蔡袁强. 地表移动荷载对既有地下隧洞动力影响解析研究[J]. 岩土工程学报, 2018, 40(12): 2266-2273. DOI: 10.11779/CJGE201812014
引用本文: 曹志刚, 孙思, 袁宗浩, 蔡袁强. 地表移动荷载对既有地下隧洞动力影响解析研究[J]. 岩土工程学报, 2018, 40(12): 2266-2273. DOI: 10.11779/CJGE201812014
CAO Zhi-gang, SUN Si, YUAN Zong-hao, CAI Yuan-qiang. Analytical investigation of dynamic impact of moving surface loads on underground tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2266-2273. DOI: 10.11779/CJGE201812014
Citation: CAO Zhi-gang, SUN Si, YUAN Zong-hao, CAI Yuan-qiang. Analytical investigation of dynamic impact of moving surface loads on underground tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2266-2273. DOI: 10.11779/CJGE201812014

地表移动荷载对既有地下隧洞动力影响解析研究  English Version

基金项目: 国家重点研发计划项目(2016YFC0800200); 国家自然科学基金项目(51578500,51778571,51708503); 中国博士后科学基金资助项目(2017M621967)
详细信息
    作者简介:

    曹志刚(1983- ),男,副教授,博士生导师,主要从事土动力学方面的研究。E-mail:caozhigang2011@zju.edu.cn。

  • 中图分类号: TU435

Analytical investigation of dynamic impact of moving surface loads on underground tunnel

  • 摘要: 为获得地表移动荷载对地下隧洞的动力影响,首次给出了地表移动荷载作用下半空间隧洞动力响应解析解。地表移动荷载采用移动简谐荷载模拟,含隧洞半空间地基通过各向同性弹性介质模拟。基于弹性地基控制方程在直角坐标系和柱坐标系下基本解及平面与柱面波函数波形转换,结合地基表面和隧洞柱面施加边界条件,在频域中求得移动荷载下半空间弹性地基与隧洞解析解答,并结合快速Fourier逆变换求得隧洞时域动力响应。利用本解析模型,可计算获得地面移动荷载引起的地下隧洞振动影响,通过与已有研究对比,对本模型正确性进行验证。计算分析了不同荷载移动速度与隧洞埋深下,隧洞表面位移、加速度和地基中动应力响应。研究表明,随着荷载移动速度增加,隧道拱顶地基中动应力与振动加速度均显著增加。地基中动应力随隧道埋深增加迅速衰减,隧洞加速度随埋深衰减相对较慢,但当隧洞埋深超过某一临界深度时,隧洞振动可低于我国规范规定限值。在低速范围,隧洞临界深度随荷载速度线性增加,但当荷载速度超过一定值,隧洞临界深度随着荷载速度呈指数型增长。
    Abstract: To investigate the influences of the moving surface loads on the underground tunnel, an analytical solution for calculating vibrations from a circular tunnel buried in a half-space due to moving surface loads is firstly given. The surface load is represented by a moving harmonic point load, and the half-space with a circular hole is visco-elastic. The analytical solution is obtained in the frequency domain based on the fundamental solutions of governing equation for elastic ground in Cartesian and cylindrical coordinate systems. Also, the transformations between the plane wave functions and the cylindrical wave functions and the surface boundary conditions should be used. Then the response in the time domain is obtained by the inverse Fourier transform. The influences of moving surface loads on the vibration of underground tunnel can be investigated by using the analytical model. The displacement and acceleration of the tunnel and the dynamic stress response in the ground under different load velocities and tunnel buried depth are analyzed. The results show that both the dynamic stress and the acceleration responses above the vault of the tunnel increase significantly as the moving speed of the load increases. The dynamic stresses decay rapidly as the buried depth of the tunnel increases, while the acceleration responses decay relatively slowly. When the buried depth of the tunnel increases to the critical depth, the vibration level of the tunnel can meet the requirements of Chinese specification. The critical tunnel buried depth increases linearly with the moving speed of loads at the low speed range, while when the speed exceeds 100 km/h, the critical tunnel buried depth increases exponentially with the increase of load speed.
  • [1] LIU G B, XIE K H.Transient response of a spherical cavity with a partially sealed shell embedded in viscoelastoc saturated soil[J]. Journal of Zhejiang University (Science A), 2005, 6(3): 194-201.
    [2] SENJUNTICHAI T, RAJAPAKSE R.Transient response of a circular cavity in a poroelastic medium[J]. International journal for numerical and analytical methods in geimechanics, 1993, 17(6): 357-383.
    [3] LU J F, JENG D S.Dynamic response of a circular tunnel embedded in a saturated poroelastic medium due to a moving load[J]. Journal of Vibration and Acoustics, 2006, 128(6): 750-756.
    [4] LU J F, JENG D S.Dynamic analysis of an infinite cylindrical hole in a saturated poroelastic medium[J]. Archive of Applied Mechanics, 2006, 76(5/6): 263-276.
    [5] 刘干斌, 谢康和, 施祖元. 黏弹性饱和多孔介质中圆柱孔洞的频域响应[J]. 力学学报, 2004, 36(5): 557-563.
    (LIU Gan-bin, XIE Kang-he, SHI Zu-yuan.Frequency response of a cylindrical cavity in viscoelastic saturated porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5): 557-563. (in Chinese))
    [6] METRIKINE A V, VROUWENVELDER A.Surface ground vibration due to a moving train in a tunnel: two-dimensional model[J]. Journal of Sound and Vibration, 2000, 234(1): 43-66.
    [7] LU J F, JENG D S, LEE T L.Dynamic response of a piecewise circular tunnel embedded in a poroelastic medium[J]. Soil Dynamic and Earthquake Engineering, 2007, 27(9): 875-891.
    [8] SHENG X, JONES C J C, THOMPSON D J. Prediction of ground vibration from trains using the wavenumber finite and boundary element methods[J]. Journal of Sound and Vibration, 2006, 293(3): 575-586.
    [9] 袁宗浩. 饱和土地区地铁列车运行引起的环境振动影响研究[D]. 杭州: 浙江大学, 2016.
    (YUAN Zong-hao.Enviromental vibrations induced by underground railways in the saturated soil[D]. Hangzou: Zhejiang University, 2016. (in Chinese))
    [10] SNEDDON I N.The stress produced by a pulse of pressure moving along the surface of a semi-infinite solid[J]. Rendiconti del Circolo Matematico di Palermo, 1952, 2: 57-62.
    [11] BIERER T, BODE C.A semi-analytical model in time domain for moving loads[J]. Soil Dynamic and Earthquake Engineering, 2007, 27: 1073-1081.
    [12] XU B, LU J F, WANG J H.Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics, 2008, 35: 1-10.
    [13] HUNG H H, YANG Y B, CHANG D W.Wave barriers for reduction of trains-induced vibrations in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 130(12): 1283-1291.
    [14] TAKEMIYA H.Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J]. Soil Dynamics and Earthquake Engineering, 2004, 24: 69-87.
    [15] CAO Z G, CAI Y Q, BOSTRÖM A. Semi-analytical analysis of the isolation to moving-load induced ground vibrations by trenches on poroelastic half-space[J]. Journal of Sound and Vibration, 2012, 331: 947-961.
    [16] HUANG X, SCHWEIGER H, HUANG H.Influence of deep excavations on nearby existing tunnels[J]. International Journal of Geomechanics, 2013, 13(2): 170-180.
    [17] ZHANG X M, OU X F, YANG J S, et al.Deformation response of an existing tunnel to upper excavation of foundation pit and associated dewatering[J]. International Journal of Geomechanics, 2017, 17(4): 04016112.
    [18] SHI C, CAO C, LEI M, et al.Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2016, 51: 175-188.
    [19] POTTS D M, ATKINSON J H.Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [20] KLAR A, VORSTER T E B, SOGA K, et a1. Soil-pipe interaction due to tunneling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [21] 戴宏伟, 陈仁朋, 陈云敏. 地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J]. 岩土工程学报, 2006, 28(3): 312-316.
    (DAI Hong-wei, CHEN Ren-peng, CHEN Yun-min.Study on effect of construction loads on longitudinal deformation of adjacent metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 312-316. (in Chinese))
    [22] 王正安, 肖洪天, 闫强刚. 地面列车动荷载对下穿隧道影响的动力学响应分析[J]. 山东科技大学学报(自然科学版), 2016, 35(3): 67-72.
    (WANG Zheng-an, XIAO Hong-tian, YAN Qiang-gang.Analysis of dynamic response of undercrossing tunnels to vibration loads of ground trains[J]. Journal of Shandong University of Science and Technology (Natural Science), 2016, 35(3): 67-72. (in Chinese))
    [23] HUNG H H, YANG Y B.Analysis of ground vibrations due to underground trains by 2.5D finite/infinite element approach[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(3): 327-335.
    [24] HUNG H H, YANG Y B.Elastic waves in visco-elastic half-space generated by various vehicle loads[J]. Soil Dynamic and Earthquake Engineering, 2001, 21: 1-17.
    [25] GB 10070—88城市区域环境振动标准[S]. 1988. (GB 10070—88 Standard of environmental vibration in urban area[S]. 1988. (in Chinese))
  • 期刊类型引用(11)

    1. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
    2. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
    3. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
    4. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
    5. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
    6. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
    7. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
    8. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
    9. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
    10. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
    11. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-09-30
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回