• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同直径盾构隧道地层损失率的对比研究

吴昌胜, 朱志铎

吴昌胜, 朱志铎. 不同直径盾构隧道地层损失率的对比研究[J]. 岩土工程学报, 2018, 40(12): 2257-2265. DOI: 10.11779/CJGE201812013
引用本文: 吴昌胜, 朱志铎. 不同直径盾构隧道地层损失率的对比研究[J]. 岩土工程学报, 2018, 40(12): 2257-2265. DOI: 10.11779/CJGE201812013
WU Chang-sheng, ZHU Zhi-duo. Comparative study on ground loss ratio due to shield tunnel with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265. DOI: 10.11779/CJGE201812013
Citation: WU Chang-sheng, ZHU Zhi-duo. Comparative study on ground loss ratio due to shield tunnel with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265. DOI: 10.11779/CJGE201812013

不同直径盾构隧道地层损失率的对比研究  English Version

基金项目: 国家重点基础研究发展计划项目(2015CB057803)
详细信息
    作者简介:

    吴昌胜(1985- ),男,博士研究生,主要从事隧道与地下工程等方面的研究工作。E-mail: shengchangwu@126.com。

  • 中图分类号: TU45

Comparative study on ground loss ratio due to shield tunnel with different diameters

  • 摘要: 地层损失率是引起地面沉降最主要的因素之一。因此,收集了国内盾构隧道地面最大沉降实测数据,利用Peck公式反推得到地层损失率的取值,研究大直径(D>10 m)与中小直径盾构隧道地层损失率的分布规律及主要影响因素。结果表明:①中小直径、大直径盾构隧道施工引起的地层损失率分别有93.19%在0%~2.0%、近70%在0%~0.5%之间,大直径盾构隧道施工引起的地层损失率数值更小,分布更集中;②中小直径、大直径盾构隧道引起的地层损失率分别随着地层条件变好、地层渗透性的变小而减小;③两种直径盾构隧道的地面最大沉降与地层损失率均具有一定的线性相关性;④隧道覆土深度比与地层损失率的相关性较弱;⑤中小直径盾构隧道引起的地层损失率随着地层黏聚力、内摩擦角以及弹性模量的增大而逐渐减小。研究成果可为今后相关地区类似隧道工程施工诱发的地面沉降预测和施工控制提供科学参考。
    Abstract: The ground loss ratio is one of the main factors causing ground surface settlements. The measured data of the maximum ground settlement from some areas of China are collected. The ground loss ratios are obtained through back analysis of Peck formulas. The distribution and influence factors of the ground loss ratio due to large- and small-diameter shield tunnels are studied, respectively. The results show that: (1) About 93.19% of the ground loss ratio caused by small-diameter shield tunnel ranges from 0% to 2.0%, while about 70% of the ground loss ratio due to large-diameter (D>10 m) shield tunnel is 0 %~0.50%. The ground loss ratio owing to large-diameter shield tunnel is smaller, and the distribution is more concentrated compared with that of the small-diameter shield tunnel. (2) The ground loss ratio induced by small-diameter shield tunnel decreases as the soil conditions get better, while the ground loss ratio induced by large-diameter shield tunnel decreases with the decrease of permeability coefficient. (3) There is a certain correlation between the maximum ground settlement and the ground loss ratio, and the control of ground loss ratio resulting from small-diameter shield tunnel in soft soils is the most difficult. (4) The ground loss ratio has no obvious connection with the ratio of cover depth to diameter. (5) The ground loss ratio induced by small-diameter shield tunnel decreases with the increase of the cohesion, internal friction angle and modulus of elasticity. The results can provide scientific references for the prediction and control of ground settlement induced by similar tunnel construction in the future.
  • [1] HE C, FENG K, FANG Y, et al.Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University (Science A), 2012, 13(11): 858-869.
    [2] 马险峰, 王俊淞, 李削云,等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(5): 942-947.
    (MA Xian-feng, WANG Jun-song, LI Xiao-yun, et al.Centrifuge modeling of ground loss and settlement caused by shield tunnelling in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 942-947. (in Chinese))
    [3] PECK R B.Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico, 1969: 225-290.
    [4] MAIR R, TAYLOR R, Theme lecture: bored tunnel in the urban environment[C]// Proceeding of the Fourteenth International Conference on Soil mechanics and Foundation Engineering. Hamburg: Balkema, 1997: 2353-238.
    [5] LOGANATHAN N, An innovative method for assessing tunnelling-induced risks to adjacent structures[C]// PB 2009 William Barclay Parsons Fellowship Monograph 25. New York: Parsons Brinckerhoff Inc, 2011: 92.
    [6] KLAR A, KLEIN B.Energy-based volume loss prediction for tunnel face advancement[J]. Géotechnique, 2014, 64(10): 776-786.
    [7] VU M N, BROERE W, BOSCH J W.Volume loss in shallow tunneling[J]. Tunnelling and Underground Space Technology, 2016, 59(10): 77-90.
    [8] PALMER A C, MAIR R J.Ground movements above tunnels: a method for calculating volume loss[J]. Canadian Geotechnical Journal, 2011, 48(3): 451-457.
    [9] 姜忻良, 赵志民, 李园. 隧道开挖引起土层沉降槽曲线形态的分析与计算[J]. 岩土力学, 2004, 25(10): 1542-1544.
    (JIANG Xin-liang, ZHAO Zhi-min, LI Yuan.Analysis and calculation of surface settlement trough profiles due to tunneling[J]. Rock and Soil Mechanics, 2004, 25(10): 1542-1544. (in Chinese))
    [10] 魏纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报, 2010, 32(9): 1354-1361.
    (WEI Gang.Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1354-1361. (in Chinese))
    [11] 王振信. 盾构施工对环境的影响[J]. 地下工程与隧道, 2008, 22(4): 1-4.
    (WANG Zhen-xin.The environmental impact of shield tunnel construction[J]. Underground Engineering and Tunnels, 2008, 22(4): 1-4. (in Chinese))
    [12] O’REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom: their magnitude and prediction[C]// Proc Tunnelling 82, Institution of Mining and Metallurgy. London, 1982: 173-181.
    [13] MCCABE B A, ORR T L, REILLY C C.Settlement trough parameters for tunnels in Irish glacial tills[J]. Tunnelling and Underground Space Technology, 2012, 27(1): 1-12.
    [14] ZHANG Z X, ZHANG H, YAN J Y.A case study on the behavior of shield tunneling in sandy cobble ground[J]. Environmental Earth Sciences, 2013, 69(6): 1891-1900.
    [15] 韩煊, 李宁, STANDING J R.Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007, 28(1): 23-28.
    (HAN Xuan, LI Ning, STANDING J R.An adaptability study of Peck equation applied to predicting ground settlements induced by tunneling in China[J]. Rock and Soil Mechanics, 2007, 28(1): 23-28. (in Chinese))
    [16] 朱才辉, 李宁. 地铁施工诱发地表最大沉降量估算及规律分析[J]. 岩石力学与工程学报,2017, 36(增刊1): 3543-3560.
    (ZHU Cai-hui, LI Ning.Estimation and regularity analysis of maximal surface settlement induced by subway construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3543-3560. (in Chinese))
    [17] 朱才辉, 李宁. 隧道施工诱发地表沉降估算方法及其规律分析[J]. 岩土力学, 2016, 38(增刊2): 533-542.
    (ZHU Cai-hui, LI Ning.Estimation method and laws analysis of surface settlement due to tunneling[J]. Rock and Soil Mechanics, 2016, 38(S2): 533-542. (in Chinese))
    [18] 张忠苗, 林存刚, 吴世明, 等. 泥水盾构施工引起的地面固结沉降实例研究[J]. 浙江大学学报, 2012, 46(3): 431-440.
    (ZHANG Zhong-miao, LIN Cun-gang, WU Shi-ming, et al.Case study of ground surface consolidation settlements induced by slurry shield tunneling[J]. Journal of Zhejiang University, 2012, 46(3): 431-440.(in Chinese))
    [19] 徐小马. Peck公式在合肥地区的适用性分析及临近既有深基础盾构施工地面沉降研究[D]. 合肥: 合肥工业大学, 2016.
    (XU Xiao-ma.Applicability analysis of Gauss formula in Hefei area and study on the ground subsidence of shield construction near the deep foundation[D]. Hefei: Hefei University of Technology, 2016. (in Chinese))
    [20] 代朋飞. 合肥地铁盾构法施工引起地表沉降的分析与数值模拟[D]. 合肥: 安徽建筑大学, 2016.
    (DAI Peng-fei.Analysis and numerical simulation on ground settlements caused by shield driven method construction in Hefei Metro[D]. Hefei: Anhui Jianzhu University,2016. (in Chinese))
    [21] 卢昌龙. 南京地铁隧道盾构法施工地表沉降数值模拟研究[D]. 合肥: 安徽理工大学, 2014.
    (LU Chang-long.Numerical simulation analysis of surface settlement caused by Nanjing subway construction[D]. Hefei: Anhui University of Science and Technology, 2014. (in Chinese))
    [22] 杨芬. 宁波轨道交通盾构施工引起的长期沉降特性研究[D]. 宁波: 宁波大学, 2015.
    (YANG Fen.Study on the long term settlement characteristics caused by shield construction in Ningbo Rail Transit[D]. Ningbo: Ningbo University, 2015. (in Chinese))
    [23] 陈枫. 隧道开挖引起地表沉降的解析研究[D]. 上海: 同济大学, 2004.
    (CHEN Feng.Analytical study of ground settlement induced by shield tunnel[D]. Shanghai: Tongji University, 2004. (in Chinese))
    [24] 王庆. 成都地铁盾构施工对周边环境的影响研究[D]. 成都: 西南交通大学, 2009.
    (WANG Qing.Study on the influence applied to surrounding environment induced by the construction of tunnel of Chengdu metro[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
    [25] 杨期祥. 成都地铁砂卵石层盾构开挖引起的地表沉降规律分析[D]. 成都: 西南交通大学, 2016.
    (YANG Qi-xiang.Study on the regularity of surface settlement caused by shield tunnel in Chengdu sandy pebble stratum[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese))
    [26] 白海卫, 宋守信, 王剑晨. Peck 公式在双线盾构隧道施工地层变形中的适应性分析[J]. 北京交通大学学报, 2015, 39(3): 30-34.
    (BAI Hai-wei, SONG Shou-xin, WANG Jian-chen.An adaptability study of Peck formula applied to predicting ground settlements induced by double shield tunneling[J]. Journal of Beijing Jiaotong University, 2015, 39(3): 30-34. (in Chinese))
    [27] 渠开胜. 软土地层中盾构施工引起地表沉降规律研究[D].杭州: 浙江工业大学, 2014.
    (QU Kai-sheng.Research on the low of ground settlement by shield construction of metro tunnel in soft soil[D]. Hangzhou: Zhejiang University of Technology, 2014. (in Chinese))
    [28] 唐晓武, 朱季, 刘维, 等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 417-422.
    (TANG Xiao-wu, ZHU Ji, LIU Wei, et al.Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 417-422. (in Chinese))
    [29] 颜治国. 西安地铁黄土地层中盾构隧道地表沉降控制理论与技术[D]. 北京: 中国矿业大学, 2012.
    (YAN Zhi-guo.Research on the controlling theory and technology of excavation in loess stratigraphy in Xi'an Metro[D]. Beijing: China University of Mining and Technology, 2012. (in Chinese))
    [30] 李弈杉. 南宁地铁盾构隧道施工引起的地表沉降规律研究[D]. 南宁: 广西大学, 2016.
    (LI Yi-shan.Study on the law of ground settlement caused by shield tunnel construction in Nanning[D]. Nanning: Guangxi University, 2016. (in Chinese))
    [31] 徐明辉. 膨胀岩土条件下盾构施工沉降研究[D]. 广州: 暨南大学, 2016.
    (XU Ming-hui.Research on settlement of shield construction in expansion rock and soil[D]. Guangzhou: Jinan University, 2016. (in Chinese))
    [32] 郑馨, 麻凤海. 长春地层地铁隧道施工的Peck公式改进[J]. 地下空间与工程学报, 2017, 13(3): 732-736.
    (ZHENG Xin, MA Feng-hai.Improvement of Peck Formula in subway construction in Changchun[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 732-736. (in Chinese))
    [33] 雷国光, 韩飞, 徐丽娜. 富水砾砂层盾构隧道地表沉降及控制措施分析[J]. 吉林建筑大学学报, 2016, 33(1): 39-42.
    (LEI Guo-guang, HAN Fei, XU Li-na.Control measures and settlement of the soil surface caused by shield tunnel in water-rich gravelly sand[J]. Journal of Jilin Jianzhu University, 2016, 33(1): 39-42. (in Chinese))
    [34] 杨三资, 张顶立, 王剑晨, 等. 北京黏性土地层大直径土压平衡盾构施工地层变形规律研究[J]. 土木工程学报, 2015, 48(增刊1): 297-301.
    (YANG San-zi, ZHANG Ding-li, WANG Jian-chen, et al. Ground deformation characteristic due to large diameter slurry shield construction in clay in Beijing[J]. China Civil Engineering Journal, 2015, 48(S1): 297-301. ( in Chinese))
    [35] 郭玉海. 大直径土压平衡盾构引起的地表变形及掘进控制技术研究[D]. 北京: 北京交通大学, 2014.
    (GUO Yu-hai.Study on big diameter earth pressure balance shield tunneling induced ground surface movements and corresponding driving control technologies[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese))
    [36] 秦世朋. 大直径泥水盾构隧道施工地层响应分析[D]. 北京: 北京交通大学, 2015.
    (QIN Shi-peng.Analysis of ground response induced by large slurry shield tunne[D]. Beijing: Beijing Jiaotong Uiversity, 2015. (in Chinese))
    [37] LIN C G, ZHANG Z M, WU S M, et al.Key techniques and important issues for slurry shield under-passing embankments: a case study of Hangzhou Qiantang River Tunnel[J]. Tunneling and Underground Space Technology, 2013, 38(9): 306-325.
    [38] 侯永茂, 郑宜枫, 杨国祥, 等. 超大直径土压平衡盾构施工对环境影响的现场测研究[J]. 岩土力学, 2013, 34(1): 235-242.
    (HOU Yong-mao, ZHENG Yi-feng, YANG Guo-xiang, et al.Measurement and analysis of ground settlement due to EPB shield construction[J]. Rock and Soil Mechanics, 2013, 34(1): 235-242. (in Chinese))
    [39] 李庭平. 影响泥水平衡盾构施工中变形的因素分析及其对既有隧道影响的分析[D]. 上海: 上海交通大学, 2008.
    (LI Ting-ping.Analysis of deformation factors during construction of slurry type shield tunnels with the effects on existing metro tunnel[D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese))
    [40] 伍振志, 杨国祥, 杨林德, 等. 上海长江隧道过民房段地表变位预测及控制研究[J]. 岩土力学, 2010, 31(2): 582-587.
    (WU Zhen-zhi, YANG Guo-xiang, YANG Lin-de, et al.Prediction and control of ground movement of Shanghai Yangtze River tunneling across building areas[J]. Rock and Soil Mechanics, 2010, 31(2): 582-587. (in Chinese))
    [41] 程磊标, 陈有亮, 王苏然, 等. 超大直径盾构施工地表沉降分析[J]. 水资源与水工程学报, 2017, 28(1): 226-229.
    (CHENG Lei-biao, CHEN You-liang, WANG Su-ran et al. Analysis of ground surface settlement induced by the super diameter shield construction[J]. Journal of Water Resources and Water Engineering, 2017, 28(1): 226-229. (in Chinese))
    [42] 马可栓. 盾构施工引起地基移动与近邻建筑保护研究[D]. 武汉: 华中科技大学, 2008.
    (MA Ke-shuan.Research on the ground settlement caused by the shield construction and protection[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese))
    [43] 季大雪. 武汉长江隧道盾构下穿武九铁路沉降影响分析[J]. 铁道工程学报, 2009, 26(10): 59-63.
    (JI Da-xue.Analysis of the influence of underpass shield of Wuhan Yangtze River tunnel on settlement of Wuhan-Jiujiang railway[J]. Journal of Railway Engineering Society, 2009, 26(10): 59-63. (in Chinese))
    [44] 李国成, 丁烈云. 武汉长江隧道盾构施工引起的地表沉降预测[J]. 铁道工程学报, 2008, 25(5): 59-62.
    (LI Guo-cheng, DING Lie-yun.Ground Settlement Induced by Shield Construction of Wuhan Yangtze River Tunnel[J]. Journal of Railway Engineering Society, 2008, 25(5): 59-62. (in Chinese))
    [45] 肖衡. 大直径泥水盾构掘进对土体的扰动研究[D]. 北京: 北京交通大学, 2009.
    (XIAO Heng.Study on soil disturbance caused by large diameter slurry shield tunneling[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese))
    [46] 梅逸飞. 盾构法施工隧道监测监控技术研究[D]. 武汉: 武汉理工大学, 2013.
    (MEI Yi-fei.Research on monitoring technology in shield tunnel construction[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese))
    [47] 房倩, 王剑晨, 刘翔, 等. 超大直径泥水式盾构施工地层变形规律研究[J]. 现代隧道技术, 2017, 54(3): 120-125.
    (FANG Qian, WANG Jian-chen, LIU Xiang, et al.Characteristics of ground deformation induced by large-diameter slurry shield construction[J]. Modern Tunnelling Technology, 2017, 54(3): 120-125. (in Chinese))
    [48] 戴洪伟. 瘦西湖超大直径盾构隧道施工对周边环境影响分析[J]. 隧道建设, 2015, 35(4): 316-321.
    (DAI Hong-wei.Influence of super-large diameter shield tunneling on surrounding environment: case study on Slender West Lake crossing tunnel in Yangzhou, China[J]. Tunnel Construction, 2015, 35(4): 316-321. (in Chinese))
    [49] 陈健. 扬州瘦西湖盾构隧道施工关键技术与实测分析[J]. 建筑施工, 2015, 37(3): 361-364.
    (CHEN Jian.Key technology and actual measurement analysis of shield tunnel Construction of Yangzhou Slender West Lake[J]. Building Construction, 2015, 37(3): 361-364. (in Chinese))
    [50] 杨延栋, 陈馈, 李凤远, 等. 狮子洋隧道陆地段盾构施工横向地表沉降研究[J]. 隧道建设, 2014, 34(12): 1143-1147.
    (YANG Yan-dong, CHEN Kui, LI Feng-yuan, et al.Case study on transverse ground surface settlement of land section of shiziyang tunnel bored by shield[J]. Tunnel Construction, 2014, 34(12): 1143-1147. (in Chinese))
    [51] 羌培. 超大直径土压平衡盾构最佳施工参数匹配研究[D]. 上海: 上海大学, 2015.
    (QIANG Pei.The research of perfect matching of tunneling parameter for super large diameter earth pressure balance machine[D]. Shanghai: Shanghai University, 2015. (in Chinese))
  • 期刊类型引用(49)

    1. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 . 百度学术
    2. 杨明,杨志浩,王亚. 急曲线电力盾构隧道侧穿桥桩扰动特性研究. 建筑科学与工程学报. 2024(02): 124-133 . 百度学术
    3. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 . 百度学术
    4. 王小龙,朱晶晶,叶明鸽,胡卓,伍浩良,覃小纲. 软土地层下穿开挖引发上覆电缆隧道挠曲变形分析. 应用基础与工程科学学报. 2024(04): 944-956 . 百度学术
    5. 李济良,罗栋林,胡迪川. 高速铁路隧道下穿尾矿库开挖安全稳定研究. 交通科技. 2024(04): 103-109 . 百度学术
    6. 邓超. 基于昆山软土地层隧道工程的Peck公式优化. 低温建筑技术. 2024(07): 148-151+156 . 百度学术
    7. 孙常新,胡江凡,裴书锋,张玉洁,臧东升,黄文辉. 地震作用对砂土中土拱效应影响的模型试验研究. 应用基础与工程科学学报. 2024(05): 1394-1406 . 百度学术
    8. 李文乾,黄高亮,朱潇昂,刘明洪,陈俞超,胡安峰. 基于HSS模型双线隧道上跨施工对既有地铁影响. 岩土工程技术. 2024(05): 560-565 . 百度学术
    9. 李兴虎,何聪,陈忠章. 小直径盾构隧道工程概述. 市政技术. 2024(10): 85-92 . 百度学术
    10. 刘德军,乔可可,商奇,左建平,段抗,董海洋,张成瑞. 复合地层大直径盾构隧道侧穿既有桩基扰动影响研究. 中国矿业大学学报. 2024(06): 1144-1156 . 百度学术
    11. 冯上泽,丁祖德,郭永发,丁文云,刘正初,王畅羽. 下穿机场隧道悬臂掘进机开挖引起的地表沉降规律研究. 隧道建设(中英文). 2024(S2): 319-328 . 百度学术
    12. 王旭伟. Peck修正公式在郑许市域铁路地表沉降预测中的应用. 山西建筑. 2023(01): 163-167 . 百度学术
    13. 朱明. 盾构穿越不同地层的地表沉降规律及预测研究. 江苏建筑. 2023(02): 63-66+105 . 百度学术
    14. 黄戡,孙逸玮,陈湘生,邓喜,刘汝宁,吴奇江. 基于FDM-DEM耦合的盾构开挖面前方土体三维位移特性研究. 中国公路学报. 2023(06): 190-206 . 百度学术
    15. 姜越,高祥志,李彦霖,戎思达. 超大直径盾构隧道下穿交通枢纽地下结构变形特征与机理. 工业建筑. 2023(S1): 575-578 . 百度学术
    16. 夏琴,商兆涛,匡星晨,张红彬,王佐才. 芜湖过江隧道掘进对长江大堤沉降影响研究. 工程与建设. 2023(05): 1402-1407 . 百度学术
    17. 赵志国. 盾构隧道下穿高速铁路有砟轨道路基不均匀沉降分析. 城市轨道交通研究. 2023(S2): 75-78+99 . 百度学术
    18. 刘新峰,曹玉锋,尹泽政. 正常固结土层盾构隧道开挖对既有桥梁桩基的影响. 广东公路交通. 2023(06): 53-59 . 百度学术
    19. 应宏伟,姚言,王奎华,张昌桔. 双线平行顶管上跨地铁盾构隧道施工环境影响实测分析. 上海交通大学学报. 2023(12): 1639-1647 . 百度学术
    20. 李江. 软土地区钢顶管施工引起的地表变形规律. 西安科技大学学报. 2023(06): 1149-1157 . 百度学术
    21. 魏立新,杨春山,刘力英,傅栋梁. 海珠湾过江隧道总体设计方案研究. 隧道建设(中英文). 2023(S2): 359-368 . 百度学术
    22. 江帅,朱勇,栗青,周辉,涂洪亮,杨凡杰. 隧道开挖地表沉降动态预测及影响因素分析. 岩土力学. 2022(01): 195-204 . 百度学术
    23. 丁智,冯丛烈,仇硕,陆钊,范俊聪. 双线不同盾构机掘进地表变形及施工参数影响分析. 现代隧道技术. 2022(01): 183-194 . 百度学术
    24. 孙逸玮,黄戡,李宇健. 既有桥桩对盾构引起地表沉降槽的变形影响. 交通科学与工程. 2022(01): 79-87 . 百度学术
    25. 刘磊. 复合地层大直径泥水盾构施工对邻近管道的影响分析. 四川建筑. 2022(02): 164-167 . 百度学术
    26. 罗兴财,周小文,张盛红. 盾构施工地层损失控制方法及实例. 土木工程与管理学报. 2022(02): 12-18 . 百度学术
    27. 李晗,陈有亮,王良杰,吴东鹏,周飞帆. 盾构开挖冻结法加固隧道的地表沉降对比分析. 工程勘察. 2022(06): 13-19 . 百度学术
    28. 赵旭伟. 软土地层盾构下穿铁路枢纽沉降规律及施工控制. 隧道与地下工程灾害防治. 2022(02): 59-65 . 百度学术
    29. 刘琤玉,王炳龙,宋福贵,徐俊,韩学芳. 盾构施工对铁路大角度斜交框架桥的影响分析. 地下空间与工程学报. 2022(S1): 318-325 . 百度学术
    30. 尹光明,傅鹤林,侯伟治,严石生. Peck公式参数的几种取值方法研究. 铁道科学与工程学报. 2022(07): 2015-2022 . 百度学术
    31. 何占坤. 盾构隧道下穿既有车站桩筏基础影响分析及施工控制——以杭州地铁5号线盾构隧道下穿杭州南站站房工程为例. 隧道建设(中英文). 2022(S1): 222-231 . 百度学术
    32. 郭根发. 上海某地铁隧道衬砌内力及沉降变形分析. 吉林水利. 2022(08): 29-33+54 . 百度学术
    33. 王锦华. 盾构隧道下穿对机场跑道影响的随机有限元数值模拟分析. 施工技术(中英文). 2022(21): 23-29 . 百度学术
    34. 赵小虹. 盾构隧道施工引起地层损失率的变化规律. 山西建筑. 2022(24): 168-172 . 百度学术
    35. 王立玲. 软土地层盾构法下穿多层浅基民宅施工变形控制. 安徽建筑. 2021(04): 102-103 . 百度学术
    36. 朱林. 近距平行双线盾构隧道地表沉降曲线分析. 水利与建筑工程学报. 2021(03): 208-213 . 百度学术
    37. 吴锋波,郑卫强,齐剑峰,王晓明. 地铁双线盾构区间地表横向沉降槽参数分析. 地下空间与工程学报. 2021(05): 1653-1663 . 百度学术
    38. 谢雄耀,杨昌植,王强,曾里,侯剑锋,周彪. 南京和燕路过江通道盾构穿越长江大堤的沉降分析及控制研究. 岩石力学与工程学报. 2021(S2): 3313-3322 . 百度学术
    39. 黄式浩,狄宏规,王友文,姚琦钰. 管片厚度对大直径盾构隧道受力及变形的影响. 华东交通大学学报. 2020(01): 15-22 . 百度学术
    40. 李涛,崔远,刘波,刘学成. 岩-土复合地层隧道施工引起建筑物沉降计算. 华中科技大学学报(自然科学版). 2020(03): 86-91 . 百度学术
    41. 王先明,鲁茜茜,蹇蕴奇,阮雷,王士民. 盾构隧道下穿既有铁路路基及框架箱涵地表沉降分析. 路基工程. 2020(02): 119-124 . 百度学术
    42. 吴锋波,金淮,杨歧焱,郑卫强. 北京地铁隧道地表横向沉降槽参数分析. 隧道建设(中英文). 2020(05): 660-671 . 百度学术
    43. 赵雄. 盾构区间地层损失率等参数的研究. 工程勘察. 2020(11): 13-16 . 百度学术
    44. 张国权. 地铁隧道盾构施工引发的地层位移影响研究. 山东煤炭科技. 2020(11): 178-179+182+186 . 百度学术
    45. 包蓁. 特殊工况超大直径盾构施工地表变形分析研究——以上海市北横通道Ⅱ标盾构隧道施工为例. 现代隧道技术. 2020(S1): 394-403 . 百度学术
    46. 甘晓露,俞建霖,龚晓南,朱旻,程康. 新建双线隧道下穿对既有盾构隧道影响研究. 岩石力学与工程学报. 2020(S2): 3586-3594 . 百度学术
    47. 易顺,陈健,柯文汇,陈斌,刘府生,黄珏皓. 考虑小应变特性的软土盾构隧道地层变形分析. 岩土工程学报. 2020(S2): 172-178 . 本站查看
    48. 胡振联,刘艺,姜梦林,夏辉. 西安地铁某区间盾构施工产生左、右线地面沉降显著差异原因浅析. 地下水. 2019(06): 81-84 . 百度学术
    49. 张鹏远. 土压平衡盾构机下穿软弱浅覆土河床施工关键技术. 市政技术. 2019(06): 103-106 . 百度学术

    其他类型引用(34)

计量
  • 文章访问数:  450
  • HTML全文浏览量:  26
  • PDF下载量:  211
  • 被引次数: 83
出版历程
  • 收稿日期:  2017-11-14
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回