• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

新型透明黏土制配及其物理力学特性研究

孔纲强, 周杨, 刘汉龙, 王成青, 文磊

孔纲强, 周杨, 刘汉龙, 王成青, 文磊. 新型透明黏土制配及其物理力学特性研究[J]. 岩土工程学报, 2018, 40(12): 2208-2214. DOI: 10.11779/CJGE201812007
引用本文: 孔纲强, 周杨, 刘汉龙, 王成青, 文磊. 新型透明黏土制配及其物理力学特性研究[J]. 岩土工程学报, 2018, 40(12): 2208-2214. DOI: 10.11779/CJGE201812007
KONG Gang-qiang, ZHOU Yang, LIU Han-long, WANG Cheng-qing, WEN Lei. Manufacture of new transparent clay and its physical and mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2208-2214. DOI: 10.11779/CJGE201812007
Citation: KONG Gang-qiang, ZHOU Yang, LIU Han-long, WANG Cheng-qing, WEN Lei. Manufacture of new transparent clay and its physical and mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2208-2214. DOI: 10.11779/CJGE201812007

新型透明黏土制配及其物理力学特性研究  English Version

基金项目: 国家自然科学基金项目(51639002); 江苏省研究生科研与实践创新计划项目(KYCX17_0465); 中央高校基本科研业务费(学生项目)资助项目(2017B699X14)
详细信息
    作者简介:

    孔纲强(1982- ),男,浙江磐安人,博士,教授,博士生导师,主要从事桩-土相互作用及能量桩技术与应用方面的教学与研究工作。E-mail: gqkong1@163.com。

  • 中图分类号: TU47

Manufacture of new transparent clay and its physical and mechanical properties

  • 摘要: 基于人工合成透明土材料和PIV技术的可视化模型试验方法是重要的岩土工程测试手段之一,然而,目前已有透明土材料中针对模拟天然黏土的材料仍相对较少。提出以Carbopol® Ultrez10聚合物(简称U10)、NaOH粉末和纯净水为原材料,碳纳米材料掺入作为示踪粒子制成散斑场,制配一种新型透明黏土材料的技术方案与操作方法。基于调制传递函数(MTF)方法,对新型透明黏土材料的光学透明性进行量化分析,并与已有透明土材料的光学透明性进行对比分析,验证其优越性。基于微型十字板剪切试验、压缩固结试验、渗透试验及热传导试验等室内试验方法,对新型透明黏土材料的物理力学特性进行系统研究,探讨其模拟天然黏土的可行性。研究结果表明:新型透明黏土材料的光学透明厚度可达25~40 cm,较目前已有常规透明土材料的光学透明厚度提高约2~3倍;新型材料表现为中低灵敏性黏土、强度随时间明显增加,强度、压缩固结特性与天然淤泥(尤其是海相淤泥)或泥炭土的性质相近,渗透系数为2×10-7~7×10-7 cm/s,热传导系数为0.62~0.71 W·M-1·K-1
    Abstract: The visual model test based on synthetic transparent soil materials and PIV technology is one of the most important geotechnical engineering measurement technologies. However, there are still relatively few transparent materials which can be used for simulating the natural clay. A new transparent material which can simulate the natural clay is developed. It is manufactured by using Carbopol® Ultrez 10, NaOH powder and distilled water, and nano materials are served as the tracer particles for spackle pattern. The manufacture processes are introduced. Based on the modulation transfer function (MTF) method, the transparency of this material is analyzed, and also compared with that of the previous transparent materials. Based on the laboratory vane tests, consolidation tests, falling head tests and thermal conductivity tests, the geotechnical properties of this synthetic transparent clay are measured. It is shown that the transparent clay presents a good optical transparency within 30~40 cm, which is 2~3 times that of the previous materials. This material is quite consistent with the low or middle-sensitive natural clay, and its strength increases with time obviously. It has similar shear strength and consolidation properties to the natural mud (especially marine mud). Its permeability ranges from 2×10-7~7×10-7 cm/s, and its thermal conductivity ranges from 0.62~0.71 W·M-1·K-1.
  • [1] 孔纲强, 刘璐, 刘汉龙, 等. 玻璃砂透明土与标准砂变形特性对比三轴试验研究[J]. 岩土工程学报, 2013, 35(6): 1140-1146.
    (KONG Gang-qiang, LIU Lu, LIU Han-long, et al.Comparative analysis on the deformation characteristics of transparent glass sand and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese))
    [2] 孔纲强, 孙学谨, 肖扬, 等. 透明土与标准砂压缩变形特性对比试验研究[J]. 岩土工程学报, 2016, 38(10): 1895-1903.
    (KONG Gang-qiang, SUN Xue-jin, XIAO Yang, et al.Comparative experimental on compression deformation properties of transparent soil and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1895-1903. (in Chinese))
    [3] ISKANDER M, LAI J, OSWALD C, et al.Development of a transparent material to model the geotechnical properties of soils[J]. Geotechnical Testing Journal, 1994, 17(4): 425-433.
    [4] WALLACE J F, RUTHERFORD C J.Geotechnical properties of LAPONITE® RD[J]. Geotechnical Testing Journal, 2015, 38(5): 574-587.
    [5] EZZEIN F M, BATHURST R.J. A transparent sand for geotechnical laboratory modeling[J]. Geotechnical Testing Journal, 2011, 34(6): 590-601.
    [6] DOWNIE H, HOLDEN N, OTTEN W, et al.Transparent soil for imaging the rhizosphere[J]. Plos One, 2012, 7(9): 1-6.
    [7] KONG G Q, LI H, HU Y X, et al.New suitable pore fluid to manufacture transparent soil[J]. Geotechnical Testing Journal, 2017, 40(4): 658-672.
    [8] LO H, TABE K, ISKANDER M, et al.A transparent water-based polymer for simulating multiphase flow[J]. Geotechnical Testing Journal, 2010, 33(1): 1-13.
    [9] HAKHAMANESHI M, BLACK J A.Shear strength of transparent gelita-effect of mixture ratio, displacement rate and over-consolidation ratio[C]// Geochicago. 2016.
    [10] 李斗. 滇池泥炭土微观结构特征及工程力学模型研究[D]. 昆明: 昆明理工大学, 2015.
    (LI Dou.The study on micro-structure and engineering mechanical model of Dianchi peat soil in Kunming basin[D]. Kunming: Kunming University of science and Technology, 2015. (in Chinese))
    [11] BLACK J A, TAKE W A.Quantification of optical clarity of transparent soil using the modulation transfer function[J]. Geotechnical Testing Journal, 2015, 38(5): 588-602.
    [12] TERZAGHI K.Ends and means in soil mechanics[D]. Boston: Harvard University, 1944.
    [13] SCHLUE B F, MOERZ T, KREITER S.Influence of shear rate on undrained vane shear strength of organic harbor mud[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(10): 1437-1447.
    [14] MORETTO O.Effect of natural hardening on the unconfined compression strength of remolded clays[C]// Proceeding of the 2nd International Conference on Soil Mechanics and Foundation. Rotterdam, 1948.
    [15] SKEMPTON A W, NORTHEY R D.The sensitivity of clays[J]. Géotechnique, 2015, 3(1): 30-53.
    [16] 张长生, 高明显, 强小俊. 深圳后海湾海相淤泥固结系数变化规律研究[J]. 岩土工程学报, 2013, 35(增刊1): 247-252.
    (ZHANG Chang-sheng, GAO ming-xian, QIANG Xiao-jun. Variation laws of consolidation coefficent of marine clay in Houhai Bay of Shenzhen[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 247-252. (in Chinese))
    [17] 房后国. 深圳湾结构性淤泥土固结机理及模型研究[D]. 长春: 吉林大学, 2005.
    (FANG Hou-guo.The study on consolidation mechanism and model of structural soft soil in Shenzhen Bay[D]. Changchun: Jilin University, 2005. (in Chinese))
    [18] 卫国芳. 深圳湾海相淤泥的压缩特性研究[J]. 科学技术与工程, 2013, 13(3): 795-798.
    (WEI Guo-fang.Study on compression characteristics of marine silt in Shenzhen bay[J]. Science Technology and Engineering, 2013, 13(3): 795-798. (in Chinese))
    [19] TERZAGHI K, PECK R, MESRI G.Soil mechanics in engineering practice[M]. 3rd ed. New York: Wiley, 1996.
    [20] TAVENAS F, JEAN P, LEBLOND P, et al.The permeability of natural soft clays[J]. Canadian Geotechnical Journal, 2011, 20(4): 645-660.
    [21] CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(42): 443-458.
  • 期刊类型引用(11)

    1. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
    2. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
    3. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
    4. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
    5. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
    6. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
    7. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
    8. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
    9. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
    10. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
    11. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-11-01
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回