• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三维胶结结构性土UH模型

祝恩阳, 李晓强, 朱建明

祝恩阳, 李晓强, 朱建明. 三维胶结结构性土UH模型[J]. 岩土工程学报, 2018, 40(12): 2200-2207. DOI: 10.11779/CJGE201812006
引用本文: 祝恩阳, 李晓强, 朱建明. 三维胶结结构性土UH模型[J]. 岩土工程学报, 2018, 40(12): 2200-2207. DOI: 10.11779/CJGE201812006
ZHU En-yang, LI Xiao-qiang, ZHU Jian-ming. Three-dimensional UH model for structured soils considering bonding[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2200-2207. DOI: 10.11779/CJGE201812006
Citation: ZHU En-yang, LI Xiao-qiang, ZHU Jian-ming. Three-dimensional UH model for structured soils considering bonding[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2200-2207. DOI: 10.11779/CJGE201812006

三维胶结结构性土UH模型  English Version

详细信息
    作者简介:

    祝恩阳(1983- ),男,讲师,博士,主要从事岩土本构理论的教学和科研工作。E-mail:zhuenyang@ncut.edu.cn。

  • 中图分类号: TU43

Three-dimensional UH model for structured soils considering bonding

  • 摘要: 为反映胶结对结构性土剪切最终应力比以及剪胀规律的影响,将p-q坐标中静态的临界状态线(CSL)扩展为与CSL平行并随结构性衰减而从左侧移向CSL的动态临界状态线(MCSL),构造与MCSL匹配的屈服面和剪胀方程,从而将以考虑加载体积垮塌为主的结构性土统一硬化(UH)模型扩展为能考虑胶结影响的胶结结构性土UH模型。在此基础上,应用变换应力三维化方法,将所提模型应用到三维应力空间。相对于结构性土UH模型,三维胶结结构性土UH模型增加了1个模型参数描述初始胶结程度。该参数可由无侧限压缩试验近似确定。通过4种结构性土的试验结果与模型预测对照表明,三维胶结结构性土UH模型能够较合理地反映受胶结影响的结构性土等向压缩、常规三轴剪切与真三轴剪切等特性。
    Abstract: In order to reflect the influences of bonding in structured soils on the ultimate shear stress ratio and dilatancy law, a dynamic moving critical state line (MCSL), which parallels to the traditional static critical state line (CSL) and moves to the CSL as bonding structure decays, is introduced in p-q stress space. Correspondingly, the yielding surfaces and the dilatancy equation are both modified to match the MCSL. After that, a UH model for structured soils considering bonding is developed from the structured UH model mainly considering soil structure collapse. Adopting the transformed stress method, the proposed model is developed to be applied in three-dimensional stress space. Compared to the structured UH model, the proposed new model adds only 1 model parameter expressing the initial bonding level, which can be estimated by unconfined compression tests. Comparisons between test data and model predictions of 4 structured soils indicate that the proposed model is qualified in reasonably describing the behaviors of the bonding structured soils in isotropic compression, drained/undrained triaxial compression and true triaxial shear.
  • [1] 沈珠江. 土体结构性的数学模型——21 世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97.
    (SHEN Zhu-jiang.Mathematical model for soil structure——The core topic of soil umechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese))
    [2] 沈珠江. 结构性黏土的堆砌体模型[J]. 岩土力学, 2000, 21(1): 1-4.
    (SHEN Zhu-jiang.A masonry model for structured clays[J]. Rock and Soil Mechanics, 2000, 21(1): 1-4. (in Chinese))
    [3] 谢定义, 齐吉琳, 张振中. 考虑土结构性的本构关系[J]. 土木工程学报, 2000, 33(4): 35-41.
    (XIE Di-yi, QI Ji-lin, ZHANG Zhen-zhong.A constitutive laws considering soil structural properties[J]. China Civil Engineering Journal, 2000, 33(4): 35-41. (in Chinese))
    [4] 尹振宇. 天然软黏土的弹黏塑性本构模型: 进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369.
    (YIN Zhen-yu.Elastic viscoplastic model for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese))
    [5] 王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J].岩土工程学报, 2007, 29(4): 496-504.
    (WANG Li-zhong, SHEN Kai-lun.A constitutive model of consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese))
    [6] LIU M D, CARTER J P.A structured cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313-1332.
    [7] ASAOKA A, NAKANO M, NODA T.Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110.
    [8] NAKAI T, SHAHIN H M, KIKUMOTO M, et al.A simple and unified one-dimensional model to describe various characteristics of soils[J]. Soils and Foundations, 2011, 51(6): 1129-1148.
    [9] ROUAINIA M, WOOD D M.A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164.
    [10] YAO Y P, HOU W, ZHOU A N.UH model: Three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [11] YAO Y P, GAO Z W, ZHAO J D, et al.Modified UH model: Constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 2012, 138(7): 860-868.
    [12] 祝恩阳, 姚仰平. 结构性土压缩变形本构描述[J]. 岩土力学, 2015, 36(7): 1915-1922.
    (ZHU En-yang, YAO Yang-ping.Constitutively modelling the compression deformation of structured clay[J]. Rock and Soil Mechanics, 2015, 36(7): 1915-1922. (in Chinese))
    [13] 祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101-3110.
    (ZHU En-yang, YAO Yang-ping.A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101-3110. (in Chinese))
    [14] ZHU E Y, YAO Y P.Structured UH model for clays[J]. Transportation Geotechnics, 2015, 3: 68-79.
    [15] 蒋明镜, 张伏光. 考虑胶结厚度影响的结构性砂土三维胶结接触模型[J]. 岩土工程学报,2013, 35(增刊2): 1-9.
    (JIANG Ming-jing, ZHANG Fu-guang.3-D bond contact model for structured sand considering influence of bond thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1-9. (in Chinese))
    [16] LIU M D, CARTER J P, HORPIBULSUK S, et al.Modeling the behavior of cemented clay[C]// Proceedings of Sessions of Geo-Shang Ground Modification and Seismic Mitigation. Reston: ASCE, 2006: 65-72.
    [17] 陈波, 孙德安, 金盼. 海相沉积软黏土的弹塑性本构模型研究[J]. 岩土力学, 2015, 36(3): 730-738.
    (CHEN Bo, SUN De-an, JIN Pan.An elastoplastic constitutive model for marine sedimentary soft clays[J]. Rock and Soil Mechanics, 2015, 36(3): 730-738. (in Chinese))
    [18] 刘鹏, 丁文其. 双对数压缩曲线在海积软土本构中的应用[J]. 上海交通大学学报, 2016, 50(11): 1706-1711.
    (LIU Peng, DING Wen-qing.Application of Bi-Lorgarithmic compression curves in modeling of marine soft soil[J]. Journel of Shanghai Jiao Tong University, 2016, 50(11): 1706-1711. (in Chinese))
    [19] NGUYEN L D, FATAHI B, KHAHHAZ H.A constitutive model for cemented clays capturing cementation degradation[J]. International Journal of Plasticity, 2014, 56(56): 1-18.
    [20] ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al.Geotechnical properties of the Corinth Canal marl[J]. Geotechnical and Geological Engineering, 1991, 9(5): 1-26.
    [21] BALASUBRAMANIAM A S, HWANG Z M.Yielding of weathered Bangkok clay[J]. Soils and Foundations, 1980, 20(2): 1-15.
    [22] 祝恩阳, 李晓强. 胶结结构性土统一硬化模型[J]. 岩土力学, 2018, 39(1): 112-122.
    (ZHU En-yang, LI Xiao-qiang.A unified hardening model considering bonding in structured soils[J]. Rock and Soil Mechanics, 2018, 39(1): 112-122. (in Chinese))
    [23] ADACHI T, OKA F, HIRATA T, et al.Stress-strain behavior and yielding characteristics of Eastern Osaka clay[J]. Journal of the Japanese Geotechnical Society Soils & Foundation, 1995, 35(3): 1-13.
    [24] 盛佳韧, 武朝军, 叶冠林, 等. 上海黏土强度特性真三轴试验研究[J]. 岩土力学, 2013, 34(1): 47-52.
    (SHENG Jia-ren, WU Chao-jun, YE Guan-lin, et al.Strength property of Shanghai clay in true triaxial tests[J]. Rock and Soil Mechanics, 2013, 34(1): 47-52. (in Chinese))
  • 期刊类型引用(3)

    1. 符传邦,吴育麒,吴月磊. 水泥搅拌桩各项参数对软土路基沉降的影响. 市政技术. 2023(02): 73-77 . 百度学术
    2. 赵楠. 地铁隧道基底围岩动三轴试验研究. 资源信息与工程. 2022(02): 116-120 . 百度学术
    3. 魏丽,柴寿喜,张琳,李瑶. 冻融作用下三类纤维加筋固化土的抗压抗拉性能. 岩土力学. 2022(12): 3241-3248+3280 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-10-23
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回