• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

材料参数空间变异性对水泥固化淤泥填筑路堤稳定性影响研究

章荣军, 于同生, 郑俊杰

章荣军, 于同生, 郑俊杰. 材料参数空间变异性对水泥固化淤泥填筑路堤稳定性影响研究[J]. 岩土工程学报, 2018, 40(11): 2078-2086. DOI: 10.11779/CJGE201811014
引用本文: 章荣军, 于同生, 郑俊杰. 材料参数空间变异性对水泥固化淤泥填筑路堤稳定性影响研究[J]. 岩土工程学报, 2018, 40(11): 2078-2086. DOI: 10.11779/CJGE201811014
ZHANG Rong-jun, YU Tong-sheng, ZHENG Jun-jie. Influences of spatial variability of material properties on stability of embankment filled with cement-stabilized mud[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2078-2086. DOI: 10.11779/CJGE201811014
Citation: ZHANG Rong-jun, YU Tong-sheng, ZHENG Jun-jie. Influences of spatial variability of material properties on stability of embankment filled with cement-stabilized mud[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2078-2086. DOI: 10.11779/CJGE201811014

材料参数空间变异性对水泥固化淤泥填筑路堤稳定性影响研究  English Version

详细信息
    作者简介:

    章荣军(1983- ),男,博士,副教授,主要从事疏浚淤泥固化与再生利用方面的研究工作。E-mail: ce_zhangrj@hust.edu.cn。

    通讯作者:

    郑俊杰,E-mail:zhengjj@hust.edu.cn

  • 中图分类号: TU43

Influences of spatial variability of material properties on stability of embankment filled with cement-stabilized mud

  • 摘要: 采用水泥固化疏浚淤泥(CSM)作为路堤填料既能有效解决砂石等理想填料资源的短缺难题,又能科学地减轻疏浚淤泥弃置给社会带来的经济和环境压力,值得大力推广。但实际工程中CSM材性参数往往表现出极强的空间变异性,明显影响路堤的稳定性,而常规确定性设计方法(CDDM)对此考虑不足。鉴于此,基于现场CSM材性参数统计特征,通过随机有限元法(RFEM)分析了不同工况下参数空间变异性对CSM路堤稳定性的影响规律,重点比较了RFEM可靠度方法和CDDM在CSM路堤设计中的差异,结果表明CDDM无法合理表征CSM材性参数强空间变异性的影响,设计结果往往偏于危险。最后,以RFEM分析为纽带,提出了CDDM稳定安全系数、路堤设计参数、材料参数变异系数和可靠度指标四者之间的对应关系,有助于实现在不改变CDDM设计架构前提下等效表征CSM材性参数强空间变异性影响的目的。
    Abstract: The application of cement-stabilized mud (CSM) as the filling materials of embankments mitigates the issue of local scarcity of ideal filling materials (e.g., sand and gravel) and allows significant volumes of unwanted mud arising from dredging to be disposed economically and ecologically. Nevertheless, this artificial material tends to show very high spatial variability in engineering properties. The high spatial variability can produce substantial influences on the stability of CSM embankments, but is not well considered in the conventional deterministic design method (CDDM). In this study, the statistical information of the engineering properties of in-situ CSM is first identified, and the random fields characterizing the spatial variability of these properties are generated. Both deterministic and random field numerical simulations are then performed to analyze the stability of a number of typical CSM embankments. Special attention is paid to compare the difference between the CDDM and the random field method. The results show that the effect of spatial variability is significant but not reasonably accounted for in CDDM, very probably leading to unsafe design for CSM embankments. Finally, an empirical formula is proposed to describe the relationship amongst the safety factor of stability in CDDM, the embankment design parameters, the coefficient of variation for CSM strength, and the reliability index. This empirical formula can be adopted to equivalently characterize the influences of spatial variability on the stability of CSM embankments, without changing the framework of CDDM.
  • [1] TANG Y X, MIYAZAKI Y, TSUCHIDA T.Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5): 129-143.
    [2] KITAZUME M, SATOH T.Development of a pneumatic flow mixing method and its application to Central Japan International Airport construction[J]. Ground Improvement, 2003, 7(3): 139-148.
    [3] MOROHOSHI K, YOSHINAGA K, MIYATA M, et al.Design and long-term monitoring of Tokyo International Airport extension project constructed on super-soft ground. Geotechnical and Geological Engineering, 2010, 28(3): 223-232.
    [4] TAN T S, LU Y T, PHOON K K, et al.Innovative approaches to land reclamation in Singapore[C]// International Symposium on Advances in Ground Technology & Geo-Information. Singapore, 2011: 85-102.
    [5] Costal Development Institute of Technology (CDIT). Design and construction manual on deep mixing method for off-shore construction[S]. 1999. (in Japanese)
    [6] OOTA M, MITARAI Y, IBA H.Outline of pneumatic flow mixing method and application for artificial island reclamation work[C]// Proceedings of International Symposium on Deep Mixing & Admixture Stabilization (Deep Mixing 2009), Okinawa, 2009, 61: 569-574.
    [7] PHOON K K, KULHAWY F H.Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36: 612-624.
    [8] 张明, 赵有明. 基于随机场理论的吹填土土性参数空间变异性[J]. 中国港湾建设, 2012(3): 7-9.
    (ZHANG Ming, ZHAO You-ming.Spatial variability of property parameters of dredged fill based on random field theory[J]. China Harbour Engineering, 2012(3): 7-9. (in Chinese))
    [9] MATSUO M, ASAOKA A.Probability models of undrained strength of marine clay layer[J]. Soils and Foundations, 1977, 17(3): 51-68.
    [10] GRIFFITHS D V, HUANG J, FENTON G A.Influence of spatial variability on slope reliability using 2-D random fields[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2009, 135(10): 1367-1378.
    [11] GRIFFITHS D V, FENTON G A.Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geo-environmental Engineering, ASCE, 2004, 130(5): 507-518.
    [12] SATOH T, KITAZUME M.Sea reclamation with dredged soft soil for Central Japan International Airport[J]. Soft Ground Engineering in Coastal Areas, 2003: 311-318.
    [13] MITARAI Y, FUKASAWA T, SAKAMOTO A, et al.The construction project of Central Japan International Airport: application of pneumatic flow method for large and rapid work[C]// Proceedings of the 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. 2004.
    [14] GRIFFITHS D V, FENTON G A.Probabilistic settlement analysis by stochastic and random finite-element methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2009, 135(11): 1692-1637.
    [15] FENTON G A, GRIFFITHS D V.Probabilistic foundation settlement on spatially random soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(5): 381-390.
    [16] ZHANG Rong-Jun, HASAN Mohammed Shareef M S, ZHENG Jun-Jie, et al. Effect of spatial variability of engineering properties on stability of a CSMC embankment[J]. Marine Georesources & Geotechnology, DOI: 10.1080/1064119X.2017.1290168
    [17] LEE F H, LEE Y, CHEW S H, et al.Strength and modulus of marine clay-cement mixes[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(2): 178-186.
    [18] KASAMA K, OCHIAI H, YASUFUKU N.On the stress-strain behaviour of lightly cemented clay based on an extended critical state concept[J]. Soils and Foundations, 2000, 40(5): 37-47.
    [19] BALASUBRAMANIAM A S, BUENSUCESO J R.On the overconsolidated behavior of lime treated soft clay[C]// Proceedings of 12th Int Conf on Soil Mechanics and Foundation Engineering. Rio de Janeiro, 1989: 1335-1338.
    [20] HORPIBULSUK S, MIURA N, BERGADO D T.Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096-1105.
    [21] LIU Y, LEE F H, QUEK S T, et al.Effect of spatial variation of strength and modulus on the lateral compression response of cement-admixed clay slab[J]. Géotechnique, 2015, 65(10): 851-865.
    [22] FENTON G A, GRIFFITHS D V.Three-dimensional probabilistic foundation settlement[J]. Journal of Geotechnical and Geoenviron-mental Engineering, ASCE, 2005, 131(2): 232-239.
    [23] 苏成, 徐瑞, 范学明. 二维随机场离散的曲边单元局部平均法[J]. 华南理工大学学报 (自然科学版), 2008, 36(3):104-107.
    (SU Cheng, XU RUI, FAN Xue-ming.Local average method based on curced-side elements for discretization of 2D random fields[J]. Journal of South China University of Technology (Nature Science Edition), 2008, 36(3): 104-107. (in Chinese))
    [24] 蒋水华, 李典庆, 周创兵, 等. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3): 508-518.
    (JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, et al.Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. (in Chinese))
    [25] SHINOZUKA M, DEODATIS G.Simulation of multi- dimensional gaussian stochastic fields by spectral representation[J]. Applied Mechanics Reviews, 1996, 49(1): 29-53.
    [26] 李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422.
    (LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, et al.Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese))
    [27] PHOON K K, HUANG S P, QUEK S T.Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    [28] MELINK T, KORELC J.Stability of Karhunen-Loève expansion for the simulation of Gaussian stochastic fields using Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2014, 37: 7-15.
    [29] HALDAR A, MAHADEVAN S.Reliability assessment using stochastic finite element analysis[M]. New York: John Wiley & Sons, 2000.
    [30] VANMARCKE E H.Random fields: analysis and synthesis[M]. Cambridge: MIT Press, 1983.
    [31] ABE T, MIYOSHI A, MAEDA T, et al.Evaluation of soil improvement by a clay mixing consolidation method using dual-way mixing system[C]// The 32nd Japan National Conference on JSSMFE. 1997: 2353-2354.
    [32] SL386—2007水利水电工程边坡设计规范[S]. 2007. (SL 386—2007 Design code for engineered slopes in water resources and hydropower projects[S]. 2007. (in Chinese))
    [33] GB/T 50283—1999公路工程结构可靠度设计统一标准[S]. 1999.
    (GB/T 50283—1999 Unified standard for reliability design of highway engineering structures[S]. 1999. (in Chinese))
    [34] JTGD30—2004公路路基设计规范[S]. 2004.
    (JTGD30—2004 Specifications for design of highway subgrades[S]. 2004. (in Chinese))
    [35] CHING J, PHOON K K.A quantile-based approach for calibrating reliability-based partial factors[J]. Structural Safety, 2011, 33(4): 275-285.
    [36] CHING J.Equivalence between reliability and factor of safety[J]. Probabilistic Engineering Mechanics, 2015, 24(2): 159-171.
  • 期刊类型引用(17)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 夏虎. 砂土地基液化沉降的数值模拟探究. 四川建材. 2024(10): 77-79 . 百度学术
    3. 黄超天,王天齐,董玉翔,沈才华,曾志康. 级配砂不同含量的软土变形特性及其本构方程. 水道港口. 2024(05): 772-781 . 百度学术
    4. 张雪锋,李忠,陈诚,徐梓斐. 基于Origin的土工颗粒分析试验数据处理. 黄河水利职业技术学院学报. 2023(01): 42-45+54 . 百度学术
    5. 李涛,赵洪扬,翁勃航,黄晓冀,张钟毓. 细颗粒形状和含量对钙质混合砂强度的影响试验研究. 岩土工程学报. 2023(07): 1517-1525 . 本站查看
    6. 张武东,柴安俊,张建,李伟. 含细粒风积沙压实特性研究. 四川建材. 2023(10): 21-22+48 . 百度学术
    7. 尹志勇,许鸣珠,景立平,高攀,韩雪,杨光. 橡胶-砂混合土动力学研究进展. 自然灾害学报. 2023(05): 12-20 . 百度学术
    8. 李方圆,董林,夏坤,李燕,王晓磊. 细粒含量对砂土液化势影响探讨. 地震工程与工程振动. 2022(02): 244-251 . 百度学术
    9. 朱会强,张明,薛茹,郭军辉,贾继龙. 中美抗震规范中地层液化判定标准对比. 勘察科学技术. 2022(01): 1-6 . 百度学术
    10. 李富春,张璟泓,周红星,王婧,梁小丛. 粉粒及黏粒含量对强夯加固粉细砂土层效果的影响. 人民长江. 2022(08): 186-191 . 百度学术
    11. 张巍巍,袁延召,王彦军,李小龙,王攀,费召阳. 初始泥浆对吹填土抗液化强度CRR的影响. 科学技术与工程. 2022(26): 11310-11315 . 百度学术
    12. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
    13. 朱成浩,崔高航. 基于非对称滞回的不同细粒含量融化粉砂本构模型. 科学技术与工程. 2021(10): 4167-4174 . 百度学术
    14. 许锐,孔亮,袁庆盟,赵亚鹏,刘佳棋. 泥质粉砂型能源土的三轴剪切试验研究. 宁夏大学学报(自然科学版). 2021(02): 141-147 . 百度学术
    15. 陈晓飞,吴建翔,李园. 应力路径对饱和砂土动力特性影响的试验研究. 工程技术研究. 2021(12): 6-8 . 百度学术
    16. 李雪,曾毓燕,郁飞,施刚. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报. 2021(06): 998-1010 . 百度学术
    17. 胡再强,郭婧,梁志超,王凯,冯哲,陈振鹏. 黏粒含量对细粒尾矿物理力学性质的影响. 岩土工程学报. 2020(S1): 16-21 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数:  255
  • HTML全文浏览量:  7
  • PDF下载量:  232
  • 被引次数: 31
出版历程
  • 收稿日期:  2017-09-28
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回