• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于广义耦合马尔可夫链的地层变异性模拟方法

邓志平, 李典庆, 祁小辉, 曹子君

邓志平, 李典庆, 祁小辉, 曹子君. 基于广义耦合马尔可夫链的地层变异性模拟方法[J]. 岩土工程学报, 2018, 40(11): 2041-2050. DOI: 10.11779/CJGE201811010
引用本文: 邓志平, 李典庆, 祁小辉, 曹子君. 基于广义耦合马尔可夫链的地层变异性模拟方法[J]. 岩土工程学报, 2018, 40(11): 2041-2050. DOI: 10.11779/CJGE201811010
DENG Zhi-ping, LI Dian-qing, QI Xiao-hui, CAO Zi-jun. Simulation of geological uncertainty using modified generalized coupled Markov chain[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2041-2050. DOI: 10.11779/CJGE201811010
Citation: DENG Zhi-ping, LI Dian-qing, QI Xiao-hui, CAO Zi-jun. Simulation of geological uncertainty using modified generalized coupled Markov chain[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2041-2050. DOI: 10.11779/CJGE201811010

基于广义耦合马尔可夫链的地层变异性模拟方法  English Version

基金项目: 国家自然科学基金项目(51579190,51528901,51779189)
详细信息
    作者简介:

    邓志平(1990-),男,江西南昌人,博士,讲师,主要从事岩土工程可靠度分析与风险控制方面的研究。E-mail: zhipingdeng10@126.com。

    通讯作者:

    李典庆,E-mail:dianqing@whu.edu.cn

  • 中图分类号: TU43

Simulation of geological uncertainty using modified generalized coupled Markov chain

  • 摘要: 传统的广义耦合马尔可夫链模型是地层变异性模拟一种有效的工具。然而,由于岩土工程地质勘探过程中钻孔分布的稀疏性,广义耦合马尔可夫链水平方向转移概率矩阵不能直接估计,传统的广义耦合马尔可夫链模型不能直接用于地层变异性模拟。为此,提出了基于钻孔资料广义耦合马尔可夫链水平两方向转移概率矩阵的极大似然估计方法,验证了该方法的有效性,在此基础上采用信息熵图量化地层变异性。以爱尔兰地区都柏林市丹拉海尔港口处的一组钻孔资料为例进行地层变异性模拟,分析了钻孔布置方案对水平方向转移概率矩阵估计的影响,探讨了钻孔布置方案对地层变异性模拟的影响规律。结果表明:提出的水平方向转移概率矩阵极大似然估计方法能够有效地估计水平方向转移概率矩阵,从而为基于钻孔资料的地层不确定性分析奠定了基础。钻孔布置方案对各方向上转移概率矩阵的估计和地层变异性的模拟结果都十分重要,为获得准确的转移概率矩阵应提供足够的钻孔数据。钻孔位置对地层变异性模拟有明显的影响,应将钻孔布置于重点研究区域,尽量减少地层模拟不确定性。信息熵图能够直观地量化地层模拟的不确定性,可用于指导钻孔方案的布置。
    Abstract: The traditional generalized coupled Markov chain (GCMC) is an effective model for the simulation of geological uncertainty. However, it cannot be directly applied to geotechnical problems. The reason lies in that one important parameter of GCMC, namely horizontal transition probability matrix (HTPM), is hard to be estimated due to the typical large distance between boreholes. Hence, In the framework of GCMC, a maximum likelihood estimation method for HTPMs based on borehole data is proposed. The validity of the method is verified. On this basis, the information entropy plot is adopted herein to quantify geological uncertainty. In addition, the borehole data from Dun Laoghaire Harbour, Dublin City, Ireland is used to simulate the geological uncertainty. The influences of layout schemes of boreholes on HTPMs are investigated. Moreover, those on simulation of geological uncertainty are explored. The results show that the proposed method can effectively estimate HTPM, which lays a foundation for analysis of geological uncertainty based on borehole data. The layout scheme of boreholes is very important for the estimation of the transition probability matrix in all directions and the simulated results of the geological uncertainty. Adequate borehole data should be provided to obtain accurate transition probability matrices. The boreholes should be designed in the key research area to minimize the simulation of geological uncertainty. The information entropy plot can visually quantify the stratigraphic simulation uncertainty, which can be used to guide the design of borehole schemes.
  • [1] HU Q F, HUANG H W.Risk analysis of soil transition in tunnel works[C]// Underground Space--the 4th Dimension of Metropolises: Proceedings of the 33rd ITA-AITES World Tunnel Congress. London: Taylor & Francis, 2007.
    [2] HANSEN L, EILERTSEN R, SOLBERG I L, et al.Stratigraphic evaluation of a Holocene clay-slide in Northern Norway[J]. Landslides, 2007, 4(3): 233.
    [3] SCHULZ W H, MCKENNA J P, KIBLER J D, et al.Relations between hydrology and velocity of a continuously moving landslide—evidence of pore-pressure feedback regulating landslide motion?[J]. Landslides, 2009, 6(3): 181-190.
    [4] 邓志平, 李典庆, 曹子君, 等. 考虑地层变异性和土体参数变异性的边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6): 986-995.
    (DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, et al.Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-995. (in Chinese))
    [5] 祁小辉, 李典庆, 曹子君, 等. 考虑地层变异的边坡稳定不确定性分析[J]. 岩土力学, 2017, 38(5): 1385-1396.
    (QI Xiao-hui, LI Dian-qing, CAO Zi-jun, et al.Uncertainty analysis of slope stability considering geologic uncertainty[J]. Rock and Soil Mechanics, 2017, 38(5): 1385-1396. (in Chinese))
    [6] ELKATEB T, CHALATURNYK R, ROBERTSON P K.An overview of soil heterogeneity: quantification and implications on geotechnical field problems[J]. Canadian Geotechnical Journal, 2003, 40(1): 1-15.
    [7] LIAO T, MAYNE P W.Stratigraphic delineation by three-dimensional clustering of piezocone data[J]. Georisk Assessment & Management of Risk for Engineered Systems & Geohazards, 2007, 1(2): 102-119.
    [8] CAO Z, WANG Y.Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 267-276.
    [9] CHING J, WANG J, JUANG C H, et al.Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method[J]. Canadian Geotechnical Journal, 2015, 52(12): 1993-2007.
    [10] NOBRE M M, SYKES J F.Application of Bayesian kriging to subsurface characterization[J]. Canadian Geotechnical Journal, 2011, 29(4): 589-598.
    [11] DASAKA S M, ZHANG L M.Spatial variability of in situ weathered soil[J]. Géotechnique, 2012, 62(5): 375-384.
    [12] SCHÖBI R, SUDRET B. Application of conditional random fields and sparse polynomial chaos expansions to geotechnical problems[J]. Geotechnical Safety and Risk V, 2015: 445.
    [13] ZHANG L M, DASAKA S M.Uncertainties in geologic profiles vs. variability in pile founding depth[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(11): 1475-1488.
    [14] SITHARAM T G, SAMUI P, ANBAZHAGAN P.Spatial variability of rock depth in bangalore using geostatistical, neural network and support vector machine models[J]. Geotechnical & Geological Engineering, 2008, 26(5): 503-517.
    [15] LI X Y, ZHANG L M, LI J H.Using conditioned random field to characterize the variability of geologic profiles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142(4): 04015096.
    [16] ELFEKI A, DEKKING M.A Markov chain model for subsurface characterization: theory and applications[J]. Mathematical Geology, 2001, 33(5): 569-589.
    [17] 祁小辉, 李典庆, 周创兵, 等. 基于钻孔资料的耦合马尔可夫链水平方向转移概率矩阵估计[J]. 应用基础与工程科学学报, 2017, 25(5): 967-984.
    (QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, et al.Estimation of horizontal transition probability matrix for coupled Markov chain based on borehole data[J]. Journal of Basic Science and Engineering, 2017, 25(5): 967-984. (in Chinese))
    [18] ELFEKI A, DEKKING M.Modelling subsurface heterogeneity by coupled Markov chains: directional dependency, walther’s law and entropy[J]. Geotechnical and Geological Engineering, 2005, 23(6): 721-756.
    [19] ELFEKI A, DEKKING M.Reducing geological uncertainty by conditioning on boreholes: the coupled Markov chain approach[J]. Hydrogeology Journal, 2007, 15(8): 1439-1455.
    [20] PARK E, ELFEKI A, SONG Y, KIM K.Generalized coupled Markov chain model for characterizing categorical variables in soil mapping[J]. Soil Science Society of America Journal, 2007, 71(3): 909-917.
    [21] PARK E.A multidimensional, generalized coupled Markov chain model for surface and subsurface characterization[J]. Water Resources Research, 2010, 46(11): 6291-6297.
    [22] QI X H, LI D Q, PHOON K K, et al.Simulation of geologic uncertainty using coupled Markov chain[J]. Engineering Geology, 2016, 207: 129-140.
    [23] LI W, ZHANG C.A single-chain-based multidimensional Markov chain model for subsurface characterization[J]. Environmental and Ecological Statistics, 2008, 15(2): 157-174.
    [24] WELLMANN J F, REGENAUER-LIEB K. Uncertainties have a meaning: information entropy as a quality measure for 3-D geological models[J]. Tectonophysics, 2012, 526-529(2): 207-216.
    [25] LI Z, WANG X, WANG H, et al.Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field[J]. Engineering Geology, 2016, 201(22): 106-122.
  • 期刊类型引用(22)

    1. 曹虎,张广清,李世远,汪文瑞,谢彭旭,孙伟,李帅. 基于断裂过程区的压裂驱油水力裂缝扩展模型及应用. 岩土力学. 2025(03): 798-810 . 百度学术
    2. 何昭宇,王冬明,张太国,范世英. 济南地区土岩二元结构边坡加固设计及稳定性研究. 建筑结构. 2024(04): 73-79+66 . 百度学术
    3. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 . 百度学术
    4. 刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 . 百度学术
    5. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 . 百度学术
    6. 胡焕校,谢中良,甘本清,卢雨帆,邓超. 透明砂土基本特性及其在注浆模型试验中的应用. 水资源与水工程学报. 2024(04): 179-186 . 百度学术
    7. 李梦晨,赵之仲,薛军,姜益顺. 土质边坡滑坡灾害的分级预警判据. 山东交通学院学报. 2024(03): 46-55 . 百度学术
    8. 何建新,董旭光,马渊博. 坡顶荷载作用下多级边坡失稳演化机制的透明土试验研究. 西北工程技术学报. 2024(04): 347-355 . 百度学术
    9. 刘强,吴能森,黄志波,许旭堂,徐祥. 抗滑桩加固二元结构边坡可视化模型试验. 林业工程学报. 2023(02): 172-179 . 百度学术
    10. 赖成联. 基于沉井基础的重力坝坝肩滑坡处理技术. 红水河. 2023(02): 11-15 . 百度学术
    11. 周昌,马文超,胡元骏,史光明. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理. 工程地质学报. 2023(04): 1407-1417 . 百度学术
    12. 张立乾,田义斌,闫晶,李兵,孟良. 某场地高边坡和洪水综合治理工程研究. 岩土工程技术. 2023(05): 545-552 . 百度学术
    13. 周鹏,柯文斌. 可视化透明土技术在岩土变形测量实验教学中的应用. 教育教学论坛. 2023(50): 9-12 . 百度学术
    14. 梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 . 本站查看
    15. 徐志军,王云泰,杜建平,王政权,周洋,王爽. 缩径基桩竖向承载性能的透明土试验研究. 湖南大学学报(自然科学版). 2022(07): 214-221 . 百度学术
    16. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    17. 胡仕明,杨伟红,李涛,李昕堃. 公路隧道洞口顺层边坡变形规律分析. 岩土工程技术. 2022(06): 477-482 . 百度学术
    18. 刘强,吴能森,许旭堂. 基于透明土的黏土边坡土体变形特征试验. 福建工程学院学报. 2022(06): 532-536 . 百度学术
    19. 李元松,王玉,朱冬林,闫海涛,戴哲. 边坡稳定性评价方法研究现状与发展趋势. 武汉工程大学学报. 2021(04): 428-435 . 百度学术
    20. 周义. 尼日利亚某铁路项目挖方边坡溜坍防护方案研究. 住宅与房地产. 2020(06): 226-227 . 百度学术
    21. 翟淑花,孙小华,冒建,程素珍,刘欢欢. 北京山区岩土混合质边坡变形破坏机理分析. 徐州工程学院学报(自然科学版). 2020(04): 24-29 . 百度学术
    22. 徐建强,阎宗岭,李海平,马小斐. 黔西岩溶区公路土岩混合边坡致灾模式及调控技术. 公路交通技术. 2019(06): 25-30+42 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 40
出版历程
  • 收稿日期:  2017-09-23
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回