• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和软土场地中地下结构非线性地震响应分析的一个FEM-IBEM耦合方法

梁建文, 朱俊

梁建文, 朱俊. 饱和软土场地中地下结构非线性地震响应分析的一个FEM-IBEM耦合方法[J]. 岩土工程学报, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003
引用本文: 梁建文, 朱俊. 饱和软土场地中地下结构非线性地震响应分析的一个FEM-IBEM耦合方法[J]. 岩土工程学报, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003
LIANG Jian-wen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003
Citation: LIANG Jian-wen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003

饱和软土场地中地下结构非线性地震响应分析的一个FEM-IBEM耦合方法  English Version

基金项目: 国家自然科学基金项目(51378348,51578372)
详细信息
    作者简介:

    梁建文(1965- ),男,博士,教授,主要从事地震工程研究。E-mail: liang@tju.edu.cn。

    通讯作者:

    梁建文,E-mail:liang@tju.edu.cn

  • 中图分类号: TU43

FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils

  • 摘要: 基于Biot孔隙介质理论,提出了饱和软土场地中地下结构非线性地震响应分析的一个有限元-间接边界元(FEM-IBEM)耦合方法。方法考虑了饱和土骨架与孔隙水的动力耦合作用及饱和土-结构动力相互作用,并通过等效线性化方法考虑土体的非线性。该耦合方法的特点之一是有限元子域和间接边界元子域相互独立,非常适合并行计算,提高计算效率;特点之二是能够同时考虑有限元子域(近场)和间接边界元子域(远场)的土体非线性。通过与文献结果对比,验证了FEM-IBEM耦合方法的正确性和计算精度。以天津滨海地区一典型深厚饱和软土场地中两层双跨地铁车站为例,计算了地铁车站结构的地震内力和变形,并比较了饱和土体线性和非线性情况下地铁车站地震响应的差别,和饱和土体模型和单相土体模型情况下地铁车站地震响应的差别。研究表明:土体非线性对地铁车站结构的地震内力和变形具有显著影响;饱和土骨架和孔隙水的动力耦合作用对地铁车站结构地震内力和变形也有明显影响。
    Abstract: A finite element method-indirect boundary element method (FEM-IBEM) coupling method is proposed for nonlinear seismic response analysis of underground structures in water-saturated soft soils based on the Biot’s theory of a poroelastic medium. The FEM-IBEM coupling method can consider the dynamic coupling between solid frame and pore water, dynamic soil-structure interaction as well as soil nonlinearity through equivalently linear analysis. The particular advantage of the proposed coupling method is that the calculations of the FE subdomain and the IBE subdomain are independent as well as parallel. Thus, the soil nonlinearity of both the FE subdomain (near field) and the IBE subdomain (far field) can be considered by avoiding the interactive computation between them. The FEM-IBEM coupling method is validated by comparing with the results in the existing literatures. The seismic internal forces and deformations of a two-story subway station in water-saturated soft soils in Tianjin coastal district are studied. The differences in the seismic responses of the subway station between soil linearity and nonlinearity are compared, and those in the seismic responses of the subway station between water-saturated soils and dry soils (single-phase media) are also compared. It is shown that the soil nonlinearity and the dynamic coupling between solid frame and pore water significantly influence the seismic responses of the subway station including structural internal forces and deformations.
  • [1] 曹炳政, 罗奇峰, 马硕, 等. 神户大开地铁车站的地震反应分析[J]. 地震工程与工程振动, 2002, 22(4): 102-107.
    (CAO Bing-zheng, LUO Qi-feng, MA Shuo, et al.Seismic response analysis of Dakai subway station in Hyogoken- nanbu earthquake[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(4): 102-107. (in Chinese))
    [2] 刘如山. 强地震动作用下地铁结构与土脱开滑移的研究[J]. 地震工程与工程振动, 2004, 24(6): 136-141.
    (LIU Ru-shan.The analysis of slippage and coming away between the subway structure and the soil subjected to strong ground motions[J]. Earthquake Engineering and Engineering Vibration, 2004, 24(6): 136-141. (in Chinese))
    [3] 李彬, 刘晶波, 尹骁. 双层地铁车站的强地震反应分析[J]. 地下空间与工程学报, 2005, 1(5): 779-782.
    (LI Bin, LIU Jing-bo, YIN Xiao.Seismic response analysis of double-deck subway station[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5): 779-782. (in Chinese))
    [4] 杨林德, 杨超, 季倩倩, 等. 地铁车站的振动台试验与地震响应的计算方法[J]. 同济大学学报(自然科学版), 2003, 31(10): 1135-1140.
    (YANG Lin-de, YANG Chao, JI Qian-qian, et al.Shaking table test and numerical calculation on subway station structures in soft soil[J]. Journal of Tongji University, 2003, 31(10): 1135-1140. (in Chinese))
    [5] 陈国兴, 庄海洋, 杜修力, 等. 土-地铁车站结构动力相互作用大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(2): 171-176.
    (CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al.Analysis of large-scale shaking table test of dynamic soil-subway station interaction[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(2): 171-176. (in Chinese))
    [6] 景立平, 孟宪春, 孙海峰, 等. 三层地铁车站振动台试验的数值模拟[J]. 地震工程与工程振动, 2012, 32(1): 98-105.
    (JING Li-ping, MENG Xian-chun, SUN Hai-feng, et al.Numerical simulation of three-story subway station shaking table test[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(1): 98-105. (in Chinese))
    [7] 王国波, 杨林德, 马险峰, 等. 地铁车站结构三维地震响应及土非线性分析[J]. 地下空间与工程学报, 2008, 4(2): 234-237.
    (WANG Guo-bo, YANG Lin-de, MA Xian-feng, et al.Analysis of three-dimensional seismic response of subway station structure and non-linear characteristic of soil[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(2): 234-237. (in Chinese))
    [8] 李建波, 陈健云, 李静, 等. 软土浅埋地铁车站地震响应的多因素影响分析[J]. 地下空间与工程学报, 2009, 5(2): 395-401.
    (LI Jian-bo, CHEN Jian-yun, LI Jing, et al.Multi-factor influencing analysis on the seismic responses of subway station[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(2): 395-401. (in Chinese))
    [9] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250.
    (ZHUANG Hai-yang, CHEN Shao-ge, CHEN Guo-xing.Numerical simulation and analysis of earthquake damages of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese))
    [10] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62.
    (DU Xiu-li, MA Chao, LU De-chun, et al.Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese))
    [11] 陶连金, 刘春晓, 边金, 等. 大跨度Y形柱地铁车站结构地震反应研究[J]. 力学学报, 2017, 49(1): 55-64.
    (TAO Lian-jin, LIU Chun-xiao, BIAN Jin, et al.Seismic response of subway station with large span and Y shaped column[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 55-64. (in Chinese))
    [12] 刘华北, 宋二祥. 可液化土中地铁结构的地震响应[J]. 岩土力学, 2005, 26(3): 381-391.
    (LIU Hua-bei, SONG Er-xiang.Earthquake induced liquefaction response of subway structure in liquefiable soil[J]. Rock and Soil Mechanics, 2005, 26(3): 381-391. (in Chinese))
    [13] 王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627.
    (WANG Gang, ZHANG Jian-min, WEI Xing.Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627. (in Chinese))
    [14] 徐志英. 土-地下结构动力相互作用分析的有效应力法[J]. 水利学报, 1993(10): 59-63.
    (XU Zhi-ying.An effective stress method for dynamic soil-underground structure interaction analysis[J]. Journal of Hydraulic Engineering, 1993(10): 59-63. (in Chinese))
    [15] 周健, 董鹏, 池永. 软土地下结构的地震土压力分析研究[J]. 岩土力学, 2004, 25(4): 554-559.
    (ZHOU Jian, DONG Peng, CHI Yong.Research on seismic soil pressure of underground structures in soft soils[J]. Rock and Soil Mechanics, 2004, 25(4): 554-559. (in Chinese))
    [16] 李亮, 崔智谋, 康翠兰, 等. 流固耦合饱和两相介质动力模型在ABAQUS中的实现[J]. 岩土工程学报, 2013, 35(增刊2): 281-285.
    (LI Liang, CUI Zhi-mou, KANG Cui-lan, et al.Fluid-solid coupling dynamic model for fluid-saturated porous media in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 281-285. (in Chinese))
    [17] 李鹏, 刘光磊, 宋二祥. 饱和地基中地下结构地震反应若干问题研究[J]. 地震工程学报, 2014, 36(4): 843-849.
    (LI Peng, LIU Guang-lei, SONG Er-xiang.Research on seismic response of underground structures in saturated foundation[J]. China Earthquake Engineering Journal, 2014, 36(4): 843-849. (in Chinese))
    [18] 刘中宪, 琚鑫, 梁建文. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报, 2015, 37(9): 1599-1612.
    (LIU Zhong-xian, JU Xin, LIANG Jian-wen.IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1599-1612. (in Chinese))
    [19] 谷音, 庄舒曼, 卓卫东, 等. 考虑饱和土的地铁车站结构非线性地震反应研究[J]. 岩土力学, 2015, 36(11): 3243-3251.
    (GU Yin, ZHUANG Shu-man, ZHUO Wei-dong, et al.Analysis of nonlinear seismic response of subway station considering saturated soil[J]. Rock and Soil Mechanics, 2015, 36(11): 3243-3251. (in Chinese))
    [20] 韩冰, 梁建文, 张季. 深厚软土场地中透镜体对上部结构地震响应的影响[J]. 地震工程与工程振动, 2016, 1(5): 151-161.
    (HAN Bing, LIANG Jian-wen, ZHANG Ji.Effect of lenticle in deep soft site on seismic response of structures[J]. Earthquake Engineering and Engineering Vibration, 2016, 1(5): 151-161. (in Chinese))
    [21] BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid (I): low frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    [22] LIANG Jian-wen, YOU Hong-bing.Dynamic stiffness matrix of a poroelastic multi-layered site and its Green’s functions[J]. Earthquake Engineering and Engineering Vibration, 2004, 3(2): 273-282.
    [23] LIANG Jian-wen, YOU Hong-bing.Green’s functions for uniformly distributed loads acting on an inclined line in a poroelsatic layered site[J]. Earthquake Engineering and Engineering Vibration, 2005, 4(2): 233-241.
    [24] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52-61.
    (ZHANG Ji, LIANG Jian-wen, BA Zhen-ning.Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space[J]. Engineering Mechanics, 2016, 33(10): 52-61. (in Chinese))
    [25] LIANG Jian-wen, ZHANG Ji, BA Zhen-ning.Amplification of in-plane seismic ground motion by group cavities in layered half-space (II): with saturated poroelastic soil layers[J]. Earthquake Science, 2012, 25(4): 287-298.
    [26] 李玲玲. 地下结构的非线性地震响应分析[D]. 天津: 天津大学, 2014.
    (LI Ling-ling.Nonlinear seismic response analysis of underground structures[D]. Tianjin: Tianjin University, 2014. (in Chinese))
    [27] 李鹏, 宋二祥. 渗透系数极端情况下饱和土中压缩波波速及其物理本质[J]. 岩土力学. 2012, 33(7): 1979-1985.
    (LI Peng, SONG Er-xiang.Compressional wave velocity and its physical nature in saturated soils with extreme permeability values[J]. Rock and Soil Mechanics, 2012, 33(7): 1979-1985. (in Chinese))
    [28] LIANG Jian-wen, FU Jia, TODOROVSKA M I, et al.In-plane soil-structure interaction in layered, fluid-saturated, poroelastic half-space I: structural response[J]. Soil Dynamics and Earthquake Engineering, 2016, 81: 84-111.
    [29] RAJAPAKES R K N D, SENJUNTICHAI T. Dynamic response of a multi-layered poroelastic medium[J]. Earthquake Engineering & Structure Dynamics, 1995, 24(5): 703-722.
  • 期刊类型引用(29)

    1. 马乐,李云,陈晨文. 上软下硬地层CSM整体式止水帷幕施工关键技术. 施工技术(中英文). 2024(11): 97-102 . 百度学术
    2. 陈伟. 复杂富水地层地铁深大基坑渗漏治理技术研究. 施工技术(中英文). 2024(13): 109-114 . 百度学术
    3. 孙立光,朱颖,时刚,王瑜,刘攀,郜新军,朱超杰. 饱和地基中劲芯水泥土墙隔振的二维BEM-FEM耦合分析. 世界地震工程. 2024(04): 164-178 . 百度学术
    4. 任路,秦超,向虎,杨天成,李荣华. 武汉某高层建筑深基坑设计与施工. 施工技术(中英文). 2023(01): 119-124 . 百度学术
    5. 代兴云,应卫超,孙海明. 深基坑承压水组合式处理措施的研究及应用. 城市道桥与防洪. 2023(01): 178-182+23 . 百度学术
    6. 刘树佳. 上海地区特深圆形竖井开挖承压水控制技术及效果. 水资源与水工程学报. 2023(01): 127-134 . 百度学术
    7. 魏斌,刘长斌,康建国,刘畅,杨宇航. 富水软土地区超深基坑CSM施工技术研究. 建筑施工. 2023(01): 18-21 . 百度学术
    8. 刘鹭. 双轮铣深层搅拌工法在复杂城市地下空间开发的应用研究. 福建建设科技. 2023(03): 41-44 . 百度学术
    9. 李成巍,李伟,梁志荣. 紧临越江隧道软土地层深大基坑工程设计与实践. 福建建设科技. 2023(03): 37-40 . 百度学术
    10. 古伟斌,蔡强,郭佰良. CSM双轮铣搅墙特点及其在基坑支护止水帷幕的应用. 广东土木与建筑. 2023(05): 83-86 . 百度学术
    11. 黄开勇,梁志荣,魏祥. 双排型钢等厚水泥土墙在深大基坑中的应用分析. 建筑结构. 2023(S1): 2902-2907 . 百度学术
    12. 王川. 深厚粉细砂地层深搅铣形成防渗墙施工分析. 工程技术研究. 2023(11): 57-59 . 百度学术
    13. 董晓斌,苏定立,胡贺松,李翔,唐孟雄,谢丁,谢小荣. 基于CSM工法的止水帷幕施工技术及设备研究现状. 广州建筑. 2023(06): 55-58 . 百度学术
    14. 郭建飞. 复杂环境下深基坑围护设计施工方法研究. 建设科技. 2022(11): 102-104 . 百度学术
    15. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 . 百度学术
    16. 尤田,郭佳嘉. 超深锚碇基础SMC工法槽壁力学性能研究. 世界桥梁. 2022(06): 80-85 . 百度学术
    17. 张芳,韩林芳,赵怡琳,桑运龙,刘学增,高尚,杨研. 富水地区深基坑封底榫槽关键参数研究. 隧道建设(中英文). 2022(11): 1913-1920 . 百度学术
    18. 魏祥,梁志荣,罗玉珊. 软土地区临江深大基坑工程地下水综合控制技术实践. 上海国土资源. 2022(04): 39-43+66 . 百度学术
    19. 李万全,刘德港,田万君,李永贺. 提高水泥土搅拌墙在岩溶地质中入岩速率的研究. 建筑技术开发. 2022(24): 123-125 . 百度学术
    20. 李汉龙,李学军,曾开华,崔猛,刘海林. CSM工法在深厚饱和砂土地基的现场试验研究. 南昌工程学院学报. 2021(01): 45-50 . 百度学术
    21. 李新,黄健,樊海元,陶金海,李昊雨,杨凡林. 复杂场地条件下深基坑围护技术及工程应用研究. 工程建设与设计. 2021(13): 36-38+47 . 百度学术
    22. 丁昊. TRD工法和CSM工法在上海地区超深基坑工程止水帷幕的应用. 上海建设科技. 2021(04): 49-50+53 . 百度学术
    23. 邵勇,李光诚,帅红岩,张玉山. 超深止水帷幕在武汉长江Ⅰ级阶地冲积相基坑支护工程中的选取和应用. 资源环境与工程. 2021(06): 882-886 . 百度学术
    24. 李雄威,何亮,黄开林,秦羽. 承压水条件下基坑抗突涌安全措施分析. 土工基础. 2020(05): 602-606+611 . 百度学术
    25. 蔡忠祥,岳建勇,胡耘. CSM工法等厚度水泥土搅拌墙在紧邻既有建筑深基坑工程中的应用. 四川建筑科学研究. 2020(S1): 32-40 . 百度学术
    26. 冯晓腊,崔德山,熊宗海,莫云. 武汉软土地层特点及深基坑降水研究新进展. 四川建筑科学研究. 2020(S1): 9-17 . 百度学术
    27. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 . 百度学术
    28. 刘动. 深圳地区深基坑开挖地下水控制研究. 勘察科学技术. 2020(06): 43-48 . 百度学术
    29. 陈佳培,唐力. CSM等厚度水泥土搅拌墙在长江漫滩地质上的应用. 河南科技. 2019(28): 83-85 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  262
  • HTML全文浏览量:  8
  • PDF下载量:  187
  • 被引次数: 33
出版历程
  • 收稿日期:  2017-08-30
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回