• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

上海软土小应变三轴试验及本构模拟

杨同帅, 叶冠林, 顾琳琳

杨同帅, 叶冠林, 顾琳琳. 上海软土小应变三轴试验及本构模拟[J]. 岩土工程学报, 2018, 40(10): 1930-1935. DOI: 10.11779/CJGE201810021
引用本文: 杨同帅, 叶冠林, 顾琳琳. 上海软土小应变三轴试验及本构模拟[J]. 岩土工程学报, 2018, 40(10): 1930-1935. DOI: 10.11779/CJGE201810021
YANG Tong-shuai, YE Guan-lin, GU Lin-lin. Small-strain triaxial tests and constitutive modeling of Shanghai soft clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1930-1935. DOI: 10.11779/CJGE201810021
Citation: YANG Tong-shuai, YE Guan-lin, GU Lin-lin. Small-strain triaxial tests and constitutive modeling of Shanghai soft clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1930-1935. DOI: 10.11779/CJGE201810021

上海软土小应变三轴试验及本构模拟  English Version

详细信息
    作者简介:

    杨同帅(1992- ),男,山东临沂人,硕士研究生,主要从事软黏土力学特性和隧道工程研究。E-mail:yangts@sjtu.edu..cn。

  • 中图分类号: TU43

Small-strain triaxial tests and constitutive modeling of Shanghai soft clays

  • 摘要: 软土地区新建地下工程为了减少对周边的影响,周边土体的变形通常要求控制在小应变范围内(0.001%~0.1%)。近年来随着环境要求的不断提高,软土在小应变范围内的力学特性日益受到关注。目前国内在三轴试验中测量软土小应变力学特性的研究相对较少,也缺乏相应的试验数据。利用安装有LVDT局部位移传感器的三轴仪,对上海②~⑥层软土进行了K0固结不排水剪切试验,成功获得了上海软土从0.001%小应变到20%大应变范围内的剪切模量变化规律。通过分别用初始剪切模量和有效平均主应力来对剪切模量进行归一化处理,揭示了上海软土的非线性特征、土体剪切模量的衰减规律等。考虑土体应力状态、孔隙比和超固结比的经验公式能够合理地描述上海软土层初始剪切模量;经典的骨干曲线模型能较好地拟合各土层的剪切模量衰减规律。
    Abstract: In order to reduces the influence of the existing buildings in the surrounding area, the surrounding soil of the new project usually requires the control of the small strain state (0.001%~0.1%). In recent years, the construction scale of underground projects has been continuously expanded, and the mechanical properties of soft clay in the small strain range have received increasing attention. At present, the study on the small-strain mechanical properties of soft soils in triaxial tests is relatively few and lack of the relevant test data. A small strain is developed based on an the LVDT sensors with high-accuracy triaxial apparatus, and K0 consolidation undrained shear tests on layer ②~⑥ soils are performed of Shanghai soft using the triaxial apparatus. The change of modulus of Shanghai soft soils in the small strain range of 0.001%~20% is obtaived. The shear modulus is normalized by using the initial shear modulus and effective average principal stress, so as to reveal the nonlinear characteristics of Shanghai soft soils as well as the shear stiffness attenuation characteristics with strain, etc. The empirical formula considering stress state, pore ratio and overconsolidation ratio of soils can reasonably describe the initial shear modulus of Shanghai soft soils. The classical model for backbone curve can better fit the attenuation rules of shear modulus of each soil layer.
  • [1] ATKINSON J H, SALLFORS G.Experimental determination of stress-strain-time characteristics in laboratory and in situ tests[C]// Proceedings of the International Conference on Soil Mechanics and Foundation Engineering. Brasilia, 1991: 915-956.
    [2] CLAYTON C R I, HEYMANN G. Stiffness of geomaterials at very small strains[J]. Géotechnique, 2001, 51(3): 245-255.
    [3] VIGGIANI G, ATKINSON J H.Stiffness of fine-grained soil at very small strains[J]. Géotechnique, 1995, 45(2): 249-265.
    [4] CLAYTON C R I, HIGHT D W, HOPPER R J. Progressive destructuring of Bothkennar clay: implications for sampling and reconsolidation procedures[J]. Géotechnique, 1992, 42(2): 219-239.
    [5] NG C W W, PUN W K, PANG R P L. Small strain stiffness of natural granitic saprolite in Hong Kong[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(9): 819-833.
    [6] WANG Y, NG C W W. Effects of stress paths on the small-strain stiffness of completely decomposed granite[J]. Canadian Geotechnical Journal, 2005, 42(4): 1200-1211.
    [7] 江娟. 上海软土小应变特性与长期变形规律试验研究[D]. 上海: 同济大学, 2009.
    (JIANG Juan.Test study on the small strain characteristics and long-tern deformation of shanghai soft soil[D]. Shanghai: Tongji University, 2009. (in Chinese))
    [8] 汪中卫. 上海软土小应变刚度的高精度试验研究[J]. 城市道桥与防洪, 2012, 29(3): 160-162.
    (WANG Zhong-wei.Study on high-precion experiment os small strain rigidity of soft soil in Shanghai[J]. Urban Roads Bridges&Flood Control, 2012, 29(3): 160-162. (in Chinese))
    [9] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017(2): 269-278.
    (LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al.Experimental study on the parameters of HSS model of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2017(2): 269-278. (in Chinese))
    [10] 李青, 徐中华, 王卫东, 等. 上海典型黏土小应变剪切模量现场和室内试验研究[J]. 岩土力学, 2016(11): 3263-3269.
    (LI Qing, XU Zhong-hua, WANG Wei-dong, et al.Experimental study on the small strain shear modulus of typical clay in Shanghai[J]. Rock and Soil Mechanics, 2016(11): 3263-3269. (in Chinese))
    [11] 陈超斌, 武朝军, 叶冠林, 等. 小应变三轴试验方法及其在上海软土的初步应用[J]. 岩土工程学报, 2015(增刊2): 37-40.
    (CHEN Chao-bin, WU Chao-jun, YE Guan-lin, et al.Small-strain riaxial test method and its preliminary application in Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015(S2): 37-40. (in Chinese))
    [12] WU Chao-jun, YE Guan-lin, ZHANG Lu-lu, et al.Depositional environment and geotechnical properties of Shanghai clay: a comparison with ariake and bangkok clays[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 717-732.
    [13] YE Guan-lin, WU Chao-jun, WANG Jian-feng, et al.Influence and countermeasure of specimen misalignment to small strain behaviour of soft marine clay[J]. Marine Georesources & Geotechnology, 2015, 35(2): 170-175.
    [14] BALDI G, HIGHT D W, THOMAS G E.A reevaluation of conventional triaxial test methods[C]// Advanced Triaxial Testing of Soil and Rock, ASTM STP 977. Philadelphia: American Society for Testing and Materials, 1988: 219-263.
    [15] CLAYTON C R I, KHATRUSH S A. A new device for measuring local axial strains on triaxial specimens[J]. Géotechnique, 1986, 36(4): 593-597.
    [16] KIM T C, NOVAK M.Dynamic properties of some cohesive soils of Ontario. Canadian Geotech. Journal, 1981, 18(3): 371-389.
    [17] HARDIN B O, DRNEVICH V P.Shear modulus and damping in soils: Measurement and parameter effects[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(SM60): 603-624.
    [18] RAMBERG W, OSGOOD W R.Description of stress-strain curve by three parameters[C]// Technical Note 902, National Advisory Committee for Aeronautics, Washington D C, 1943.
计量
  • 文章访问数:  439
  • HTML全文浏览量:  16
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-07
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回