• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环荷载作用下格栅防护柔性埋地管道的性能分析

肖成志, 何晨曦, 王嘉勇

肖成志, 何晨曦, 王嘉勇. 循环荷载作用下格栅防护柔性埋地管道的性能分析[J]. 岩土工程学报, 2018, 40(10): 1852-1861. DOI: 10.11779/CJGE201810012
引用本文: 肖成志, 何晨曦, 王嘉勇. 循环荷载作用下格栅防护柔性埋地管道的性能分析[J]. 岩土工程学报, 2018, 40(10): 1852-1861. DOI: 10.11779/CJGE201810012
XIAO Cheng-zhi, HE Chen-xi, WANG Jia-yong. Performance of flexible buried pipes reinforced by geogrids under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1852-1861. DOI: 10.11779/CJGE201810012
Citation: XIAO Cheng-zhi, HE Chen-xi, WANG Jia-yong. Performance of flexible buried pipes reinforced by geogrids under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1852-1861. DOI: 10.11779/CJGE201810012

循环荷载作用下格栅防护柔性埋地管道的性能分析  English Version

基金项目: 国家自然科学基金项目(50909032); 河北省自然科学基金项目(E2014202038); 河北省研究生创新资助项目(CXZZSS2017027)
详细信息
    作者简介:

    肖成志(1976- ),男,教授,博士生导师,主要从事土工合成材料及加筋土、边坡工程和埋地管道等方面教学与研究工作。E-mail:xiaochengzhi2@sina.com。

  • 中图分类号: TU472.34;TU990.3

Performance of flexible buried pipes reinforced by geogrids under cyclic loading

  • 摘要: 交通循环荷载下埋地管道性能与防护是当前研究的重点问题,首先针对格栅加筋柔性管道开展试验研究,分析管道埋深H为3DD为管道外径)时循环荷载水平和频率、首层格栅埋深、长度、层间距和筋材层数对管道力学与变形性能的影响,试验结果表明:首层格栅最佳埋深u为0.4BB为加载板宽度),最佳层间距ug为0.5B,最佳铺设长度L为5D;增加格栅层数能显著增强土体,从而有效减少管道变形和加载板沉降;提高荷载水平或降低荷载频率使管道变形、加载板沉降和格栅应变整体显著增加;格栅应变随其与加载板中心的距离增加而减小,格栅中心点应变随循环次数增加呈现先增加后减少的趋势。进而,基于有限元数值模拟分析管道埋深H、加载板宽度B和管径D对管道力学性能的影响,数值结果表明增加管道埋深或减小加载板宽度,管道径向变形减小;同等荷载作用下,减小管径时管道径向变形增大,筋材加筋效果减弱,适当增加管道直径,有利于筋材加筋作用的充分发挥,从而减小管道径向变形。
    Abstract: The study on protection performance of buried pipes under cyclic loading has been increasingly concerned. Firstly, a series of laboratory tests are conducted to investigate the mechanical performance of buried pipes during cyclic loading when the buried depth of pipes is 3D (D, external diameter of pipes). The results show that the optimum embedment depth of the uppermost reinforcement, spacing of geogrid layers and length of reinforcement are 0.4B (B, width of loading plates), 0.5B and 5D, respectively. Adding the numbers of layers of geogrids can significantly enhance the strength of soils and thus reduce the deformation of pipes and settlements of loading plates. It is pronounced that higher level of loading or lower frequency can affect remarkably the mechanical performance of buried pipes. Increasing the level of cyclic loading or lowering frequency of loads can result in the increase of radial deformations of pipes, settlements of loading plates and strains of geogrids. The strains of reinforcement decrease with the increase of distance away from the center of loading plates, and those of geogrids in the center tend to increase firstly and then decrease with the increase of cycles of loads. Furthermore, based on the numerical simulation method, the mechanical properties of pipes under different buried depths of pipelines, H, width of loading plates, B, and pipe diameter, D, are presented. The increasing buried depth or decreasing width of loading plates may reduce the radial deformations of pipes. The reinforcement effect is weakened for the pipes with smaller diameters, leading to the increase of deformations of pipes. However, the reinforcement plays a significant role in reducing the deformations of pipes with greater diameters.
  • [1] 黄强兵, 梁奥, 门玉明, 等. 地裂缝活动对地下输水管道影响的足尺模型试验[J]. 岩石力学与工程学报, 2016, 35(1): 2968-2977.
    (HUANG Qiang-bing, LIANG Ao, MEN Yu-ming, et al.Full-scale model test on behaviors of urban underground water delivery pipeline crossing active ground fissure zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 2968-2977. (in Chinese))
    [2] 龚晓南, 孙中菊, 俞建霖. 地面超载引起邻近埋地管道的位移分析[J]. 岩土力学, 2015, 36(2): 305-310.
    (GONG Xiao-nan, SUN Zhong-ju, YU Jian-lin.Analysis of displacement of adjacent buried pipeline caused by ground surcharge[J]. Rock and Soil Mechanics, 2015, 36(2): 305-310. (in Chinese))
    [3] 李镜培, 丁士君. 邻近建筑荷载对地下管线的影响分析[J]. 同济大学学报(自然科学版), 2004, 32(12): 1553-1557.
    (LI Jing-pei, DING Shi-jun.Influence of additional load caused by adjacent buildings on underground pipeline[J]. Journal of Tongji University (Natural Science), 2004, 32(12): 1553-1557. (in Chinese))
    [4] 董冬冬, 王非, 张亚军, 等. 交通荷载作用下HDPE管道附加弯矩变化规律研究[J]. 地下空间与工程学报, 2016, 12(1): 80-88.
    (DONG Dong-dong, WANG Fei, ZHANG Ya-jun, et al.Study on the changing mechanism of additional bending moment in buried HDPE pipes under traffic loading[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(1): 80-88. (in Chinese))
    [5] 张孟喜, 林青松, 刘飞禹. 循环荷载作用下土工格栅拉伸试验研究[J]. 岩土力学, 2010, 31(7): 2024-2029.
    (ZHANG Meng-xi, LIN Qing-song, LIU Fei-yu.Tensile experiments of geogrids under cyclic loading[J]. Rock and Soil Mechanics, 2010, 31(7): 2024-2029. (in Chinese))
    [6] 杨广庆, 庞巍, 吕鹏, 等. 塑料土工格栅拉伸特性试验研究[J]. 岩土力学, 2008, 29(9): 2387-2391.
    (YANG Guang-qing, PANG Wei, LÜ Peng, et al.Experimental study of tensile properties of geogrids[J]. Rock and Soil Mechanics, 2008, 29(9): 2387-2391. (in Chinese))
    [7] KWON J, TUTUMLUER E, AL-QADI I L. Validated mechanistic model for geogrid base reinforced flexible pavements[J]. Journal of Transportation Engineering, 2009, 135(12): 915-926.
    [8] TURAN A, NAGGAR H E, VALSANGKAR A.Earth pressure reduction system using geogrid-reinforced platform bridging for buried utilities[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015024.
    [9] COREY R, HAN J, KHATRI D K, et al.Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014019.
    [10] HEGDE A, KADABINAKATTI S, SITHARAM T G.Use of geocells to protect buried pipelines and underground utilities in soft clayey soils[C]// Geo-Chicago, 2016: 914-924.
    [11] KAWABATA T, SAWADA Y, UCHIDA K, et al.Lateral loading experiments on thrust protecting method for buried bend with geogrid[C]// Geo-Frontiers Congress, 2005: 1-8.
    [12] MOHRI Y, FUJITA N, KASAHARA K, et al.Mechanical behavior of large flexible pipe buried in shallow cover: field performance of pipeline with uplift enhancement by use of geogrids[C]// Pipeline Division Specialty Conference, 2001: 1-9.
    [13] DAS B M, SHIN E C, OMAR M T.The bearing capacity of surface strip foundations on geogrid-reinforced sand and clay: a comparative study[J]. Geotechnical and Geological Engineering, 1994, 12(1): 1-14.
    [14] Canadian Standards Association.CSA Z662—15 Oil and gas pipeline systems[S]. Mississauga: CSA, 2015.
    [15] 高立新. 埋地塑料排水管道径向变形浅析[J]. 给水排水, 2010, 36(9): 171-173.
    (GAO Li-xin.Analysis of radial deformation of buried plastic drainage pipes[J]. Water and Wastewater Engineering, 2010, 36(9): 171-173. (in Chinese))
  • 期刊类型引用(2)

    1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 . 百度学术
    2. 舒方法,杨三元,陈韬. 海上风电工程大型构件姿态监测系统开发与应用研究. 港口航道与近海工程. 2024(02): 80-84 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  274
  • HTML全文浏览量:  5
  • PDF下载量:  151
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-08-01
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回