Bearing behavior of a single pile in double-layered nonhomogeneous subsoil under V-T combined loads
-
摘要: 为探讨近海环境双层非均质地基中预制型单桩基础在桩顶竖向荷载V和扭矩T联合作用下的承载特性,假定单层地基土体剪切模量随深度呈幂函数分布,考虑桩-土接触面上极限摩阻力沿深度的非线性变化,并计入桩-土接触面上的位移非协调性,基于剪切位移法和桩身荷载传递函数建立出桩身位移控制方程,由此导得不同加载顺序(V→T或T→V)和受力阶段下的桩身内力位移解答,进而获得桩身承载力包络图。通过与已有成果的对比分析,验证了模型与解答的合理性。最后,通过参数分析获得了桩身长径比(L/D)、加载顺序以及地基土剪切模量幂函数分布系数(m1,m2与n)等参数对桩身承载变形特性的影响规律:桩身承载力随L/D与n的增大而逐渐减小;V→T加载时m1的影响范围主要为z/L≤0.4,m2影响范围随Tt/Tult的增加而增大;T→V加载时m1基本无影响,而m2的影响范围为0.6≤z/L≤1.0;桩顶可承受的竖向力随扭矩增加不断减小而趋于零,且V→T加载时的承载力包络线始终处于T→V承载力包络线外侧。Abstract: To discuss the bearing behavior of a single pile under combined vertical load V and torque T in offshore double-layered nonhomogeneous subsoil, the shear modulus of each soil layer is assumed as an increasing distribution with the depth defined by a power function. Then, considering various loading sequences and the non-coordination deformation along the pile-soil interface, the governing equation for the pile shaft is first established by using the load transfer function and the shear displacement method. Subsequently, the analytical solutions are deduced to calculate the inner forces and deformations of the pile shaft under various bearing stages and loading sequences (V→T or T→V). Based on the results by the obtained solutions, the failure envelops for the bearing capacity of the pile shaft are plotted correspondingly. Through a comparative analysis of the results with the available achievements, the rationality of the proposed method is verified. Finally, a parameter analysis is carried out to discuss the influence laws by the key factors such as the slenderness ratio of pile shaft (L/D), loading sequences and constant coefficients determining the shear modulus distribution (m1, m2, n) of subsoil. The results show that the bearing capacity decreases with the increase of L/D and n. The main influence range of m1 is z/L≤0.4 and the influence range of m2 increases with the increase of Tt /Tult under V→T loading path. The effect of m1 can be ignored and the main influence range of m2 is 0.6≤z/L≤1.0 under T→V loading path. To increase the value of torsion at the pile top will result in a decreasing vertical bearing capacity with a final zero value. Furthermore, the failure envelope under V→T loading path remains outside of that under T→V loading.
-
[1] COYLE H M, REESE L C.Load transfer for a axially loaded piles in clay[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92(2): 1-26. [2] GUO W D.Vertically loaded single piles in Gibson soil[J]. Journal of Geotechnical Engineering and Geoenvironmental Engineering, ASCE, 2000, 126(2): 189-193. [3] 赵明华, 邹新军, 刘齐建. 洞庭湖软土地区大直径超长灌注桩竖向承载力试验研究[J]. 土木工程学报, 2004, 37(10): 63-67.
(ZHAO Ming-hua, ZOU Xin-jun, LIU Qi-jian.Loading test on the vertical bearing capacity of super-long and large diameter bored piles in the soft soil area of Dongting Lake[J]. China Civil Engineering Journal, 2004, 37(10): 63-67. (in Chinese))[4] 赵明华, 邹新军, 邹银生, 等.倾斜荷载下基桩的改进有限元–有限层分析方法[J]. 工程力学, 2004, 21(3): 129-133.
(ZHAO Ming-hua, ZOU Xin-jun, ZOU Yin-Sheng, et al.Behavior of pile under inclined loads by the improved finite element-finite layer method[J]. Engineering Mechanics, 2004, 21(3): 129-133. (in Chinese))[5] POULOS H G.Torsional response of piles[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1975, 101(10): 1019-1035. [6] RANDOLPH M F.Piles subjected to torsion[J]. Journal of Geotechnical Engineering Division, ASCE, 1981, 107(8): 1095-1111. [7] HACHE R A G, VALSANGKAR A J. Torsional resistance of single pile in layered soil[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(2): 216-220. [8] CHOW Y K.Torsional response of piles in non-homogeneous soil[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(7): 942-947. [9] GUO W D, RANDOLPH M F.Torsional piles in non-homogeneous media[J]. Computers and Geotechnics, 1996, 19(4): 265-287. [10] 孔令刚, 张利民. 群桩扭转非线性模型[J]. 岩土力学, 2009, 30(8): 2231-2236.
(KONG L G, ZHANG L M.Nonlinear analysis of pile groups subjected to torsion[J]. Rock and Soil Mechanics, 2009, 30(8): 2231-2236. (in Chinese))[11] 陈胜立, 张利民. 层状地基中单桩的扭转变形分析[J]. 岩土工程学报, 2005, 27(5): 531-534.
(CHEN Sheng-li, ZHANG Li-min.Torsional response of single pile embedded in layered ground[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 531-534. (in Chinese))[12] 邹新军, 徐洞斌, 王亚雄. 成层地基中单桩受扭弹塑性分析[J]. 湖南大学学报(自然科学版), 2014, 41(9): 72-78.
(ZOU Xin-jun, XU Dong-bin, WANG Ya-xiong.Elastic- plastic analysis of torsional single pile in layered subsoil[J]. Journal of Hunan University (Natural Science), 2014, 41(9): 72-78. (in Chinese))[13] GEORGIADIS M.Interaction between torsional and axial pile response[J]. Numerical and Analytical Methods in Geomechanics, 1987, 11(6): 645-650. [14] GEORGIADIS M, SAFLEKOU S.Piles under axial and torsion loads[J]. Computers and Geotechnics, 1990, 9(4): 291-305. [15] 邹新军, 王亚雄, 徐洞斌. Gibson 地基中 V-T 联合受荷桩承载力分析[J]. 工程力学, 2014, 32(8): 149-155.
(ZOU Xin-jun, WANG Ya-xiong, XU Dong-bin.Bearing capacity analysis of piles underV-T combined loading in Gibson subsoil[J]. Engineering Mechanics, 2014, 32(8): 149-155. (in Chinese))[16] RANDOLPH M F, WROTH C P.Analysis of deformation of vertically loaded pile[J]. Journal of Geotechnical Engineering Division, ASCE, 1978, 104(12): 1465-1488. [17] GUO W D, RANDOLPH M F.Vertical loaded piles in non-homogeneous media[J]. Int J Numer Anal Meth Geomech, 1997, 21(8): 507-532. [18] RANDOLPH M F, WROTH C P.An analysis of the vertical deformation of pile groups[J]. Géotechnique, 1979, 29(4): 423-439. [19] SEO H, BASU D.Load-settlement response of rectangular and circular piles in multilayered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(3): 420-430. -
期刊类型引用(33)
1. 刘富成,陈彦丽. 大型深基坑工程可靠性及施工变形特征分析. 砖瓦. 2025(02): 152-154+158 . 百度学术
2. 韩苗苗. 不同开挖与支护方式下隧道洞口深基坑仰坡水平位移变形规律研究. 四川水泥. 2024(01): 233-235 . 百度学术
3. 何润洲,罗胜亮,杨忠平,谢惠珍. 深厚淤泥土深大基坑群同步开挖对紧邻建筑的影响. 地下空间与工程学报. 2024(02): 577-586 . 百度学术
4. 王安东,张学钢,宁波. 基于数据分解重构和AM-CRU-MLR模型的基坑变形研究与应用. 粉煤灰综合利用. 2024(05): 65-70 . 百度学术
5. 诸颖,任向东,张健,姚瑶. 软土地区锁扣型钢地下连续墙适用性研究. 工程建设与设计. 2024(23): 36-38 . 百度学术
6. 李小军. 地下隧道深基坑仰坡开挖与支护数值模拟及安全性分析. 安全与环境学报. 2023(03): 812-818 . 百度学术
7. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 . 百度学术
8. 高亚鹏,赵文辉,魏锜,杨有海. 某高速铁路明挖隧道黄土深基坑变形规律分析. 兰州工业学院学报. 2023(02): 60-65 . 百度学术
9. 严长江,李旺,张子辰. 某黄土深基坑开挖变形预测分析. 低温建筑技术. 2023(03): 101-104 . 百度学术
10. 梁二雷,王冰辉,郑功博,吴静. 临河倾斜互层下深基坑变形及渗流数值分析. 工业建筑. 2023(03): 188-196 . 百度学术
11. 赵军,胡聪伟,刘飞. 桩锚支护土岩深基坑地表沉降特征分析. 低温建筑技术. 2023(08): 142-145 . 百度学术
12. 曹卫平,席茂阳,赵呈,赵敏. 局部破坏对内撑式排桩支护基坑影响的模型试验. 水资源与水工程学报. 2023(05): 190-197 . 百度学术
13. 王钰轲,付宏松,马露. 行车荷载与基坑开挖对新建及既有基坑坑底和地连墙的影响研究. 三峡大学学报(自然科学版). 2022(02): 77-82 . 百度学术
14. 王贺. 城市双线隧道车站施工工艺优化及稳定性研究. 价值工程. 2022(17): 77-79 . 百度学术
15. 王贺. 城市地铁高架车站BIM建模及可视化研究. 建筑技术开发. 2022(15): 118-120 . 百度学术
16. 程学昌. 高孔隙水压地层基坑降水开挖施工技术研究. 山西建筑. 2021(01): 68-69+74 . 百度学术
17. 罗智勇,宋林波,丁增志,成启航,王海伦. 复杂地铁车站深基坑体系的变形分析. 四川建筑. 2021(01): 99-101 . 百度学术
18. 李又云,杨立新,刘伟,王欢,贺隆贵,李昊阳. 悬挂式止水帷幕深基坑分级降水开挖变形特性. 科学技术与工程. 2021(05): 1995-2001 . 百度学术
19. 孔令华,胡军然,牛文宣,于洋,楚袁庆. 邻近老旧房屋狭长深基坑开挖施工数值模拟及周边环境影响性分析. 建筑结构. 2021(S1): 1945-1951 . 百度学术
20. 苏继超,武俊琦,李媛. 基于青岛上软下硬地层地铁地下连续墙深基坑的变形特征研究. 工程与建设. 2021(03): 506-508 . 百度学术
21. 赵得杰,毕经东,李浩. 基于ARIMA模型的基坑变形预测研究. 粉煤灰综合利用. 2021(05): 40-45 . 百度学术
22. 陈世凯,李坤杰,闫洪江,严涛,王二力,罗成勇,刘大刚. 超大埋深基坑降水开挖结构安全性分析及对地表沉降影响. 路基工程. 2020(02): 53-57 . 百度学术
23. 孙小力,孙铁成,张旭,高晓静,刘灿灿. 地铁基坑开挖数值模拟及变形特征研究. 施工技术. 2020(07): 41-44+53 . 百度学术
24. 谭伟. 基于AutoMos自动化监测系统在地铁工程中的应用与研究. 土木建筑工程信息技术. 2020(02): 28-36 . 百度学术
25. 谭伟. 临近边坡地铁基坑开挖数值模拟研究. 土工基础. 2020(02): 176-180 . 百度学术
26. 丁猛. 密集建筑老城区地铁车站基坑开挖技术. 四川建筑. 2020(02): 67-69 . 百度学术
27. 蒙国往,农忠建,吴波,黄劲松,韦汉. 地铁车站深基坑开挖变形及数值模拟分析. 中国安全生产科学技术. 2020(07): 145-151 . 百度学术
28. 王晓静,李立云,杜修力,王子英. 削桩施作诱发基坑本体力学响应数值分析. 防灾科技学院学报. 2020(03): 10-17 . 百度学术
29. 赵宏宇,高春雷,许利东,童根树,张磊. 采用预应力型钢组合支撑的某软土深基坑监测分析研究. 工程勘察. 2020(11): 7-12 . 百度学术
30. 吕彦朋,朱宏光,张新冈,刘智军. 铁路数据中心建筑基坑支护关键技术及监测分析. 铁道建筑. 2019(05): 112-116 . 百度学术
31. 方焘,舒新亮,王海龙,石钰锋. 半刚性半盖挖体系临界施工荷载研究. 兰州交通大学学报. 2019(02): 1-8 . 百度学术
32. 尹鸿达,罗正东,李检保,黄河,袁朝阳,吴鹏. 富水砂砾石地层基坑开挖超孔压变化规律研究. 市政技术. 2019(05): 246-249 . 百度学术
33. 刘志刚. 软土地区地铁深基坑监测分析及控制措施研究. 公路. 2019(10): 239-244 . 百度学术
其他类型引用(39)