• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻结饱和标准砂压缩性试验研究

孙晓宇, 齐吉琳, 尹振宇

孙晓宇, 齐吉琳, 尹振宇. 冻结饱和标准砂压缩性试验研究[J]. 岩土工程学报, 2018, 40(9): 1723-1728. DOI: 10.11779/CJGE201809020
引用本文: 孙晓宇, 齐吉琳, 尹振宇. 冻结饱和标准砂压缩性试验研究[J]. 岩土工程学报, 2018, 40(9): 1723-1728. DOI: 10.11779/CJGE201809020
SUN Xiao-yu, QI Ji-lin, YIN Zhen-yu. Experimental study on compressibility of frozen saturated ISO standard sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1723-1728. DOI: 10.11779/CJGE201809020
Citation: SUN Xiao-yu, QI Ji-lin, YIN Zhen-yu. Experimental study on compressibility of frozen saturated ISO standard sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1723-1728. DOI: 10.11779/CJGE201809020

冻结饱和标准砂压缩性试验研究  English Version

基金项目: 国家自然科学基金面上项目(41572268); 北京市自然科学基金委-市教委联合重点项目(KZ201810016020); 北京市属高等学校高层次人才引进与培养计划项目(CIT&TCD20150101)
详细信息
    作者简介:

    孙晓宇(1994- ),女,浙江义乌人,主要从事寒区岩土工程和特殊土力学等方面的学习和研究。E-mail: 136527826@qq.com。

    通讯作者:

    齐吉琳,E-mail:jilinqi@bucea.edu.cn

  • 中图分类号: TU43

Experimental study on compressibility of frozen saturated ISO standard sand

  • 摘要: 在寒区进行高速公路和高速铁路等对变形要求严格的工程时,必须考虑冻土的压缩性。以冻结饱和标准砂为研究对象,利用自主研发的冻土侧限压缩仪开展不同温度下的分级加载试验。试验采用-0.5,-1.0,-2.0,-3.0和-5.0℃五级温度,压力分为1,2,3,5和10 MPa五级。根据试验结果得到e-σze-lgσz曲线,求得压缩系数和压缩指数,比较分析室温下的融土试样与不同温度下冻土试样的压缩系数和压缩指数随温度的变化,得到从正温到负温完整温度序列的试验规律。根据前人的模量公式得出相关参数,从而建立公式中参数与温度之间的关系。试验表明:饱和冻结标准砂压缩曲线与常温土相似;在高温条件下冻土的压缩性比较可观;冻土的压缩性受温度的影响十分显著,即压缩系数随温度的升高而增大,呈现指数函数的形式;模量公式中的参数与温度之间可建立一定的定量关系。
    Abstract: The compressibility of frozen soil must be taken into consideration when the deformation of highway and high-speed railway is strictly controlled in permafrost regions. The frozen saturated ISO standard sand is taken as the study object, and step load tests under different temperatures are carried out using a self-developed confined compression apparatus for frozen soils. The tests are conducted at the loads of 1, 2, 3, 5, 10 MPa and under temperatures of -0.5, -1.0, -2.0, -3.0, -5.0℃. The coefficient of compressibility and the compressibility index are obtained according to the e-σz and e-lgσz curves for both unfrozen and frozen samples at different temperatures. The experimental results of the complete temperature series from room temperature to negative temperature are then obtained. The correlation parameters are obtained according to the former modulus formulas, and the relationship between the parameters and the temperatures in the formulas is established. The test results indicate that the compression curve of frozen saturated ISO standard sand is similar to that of the samples under room temperature. For the warm frozen samples, the compressibility is considerable. The compressibility of frozen soil is closely related to temperature, i.e., the coefficient of compressibility increases with the increase of temperature in the form of exponential function. A certain quantitative relationship can be established between the parameters and the temperatures in the modulus formulas.
  • [1] LADANYI B.Creep behavior of frozen and unfrozen soils: a comparison[C]// Proceedings of the 10th International Conference on Cold Regions Engineering: Putting Research into Practice. Lincoln, 1999: 173-186.
    [2] QI Ji-lin, ZHANG Jian-ming.Definition of warm permafrost based on mechanical properties of frozen soil[C]// Proceedings of the 9th International Conference of Permafrost. Alaska, 2008: 1457-1461.
    [3] TB 10001—2016铁路路基设计规范[S]. 2016. (TB 10001—2016 Code for design of railway earth structure[S]. 2016. (in Chinese))
    [4] 交通部第一公路勘察设计院. 公路软土地基路堤设计与施工技术规范[M]. 北京: 人民交通出版社, 1997.
    (The First Survey and Design Institute of the Ministry of Communications. Code for embankment design and construction technology[M]. Beijing: China Communications Press, 1997. (in Chinese))
    [5] 马巍, 刘端, 吴青柏.青藏铁路冻土路基变形监测与分析[J]. 岩土力学, 2008, 29(3): 571-579.
    (MA Wei, LU Duan, WU Qing-bai.Monitoring and analysis ofembankment deformation in permafrost regions of Qinghai-Tibet railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571-579. (in Chinese))
    [6] 吴紫汪, 程国栋, 朱林楠, 等. 冻土路基工程[M]. 兰州: 兰州大学出版社, 1999.
    (WU Zi-wang, CHENG Guo-dong, ZHU Lin-nan et al. The frozen ground roadbed engineering[M]. Lanzhou: Lanzhou University Press, 1999. (in Chinese))
    [7] 齐吉琳, 马巍. 冻土力学性质研究现状[J]. 岩土力学, 2010, 31(1): 133-143.
    (QI Ji-lin, MA Wei.State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133-143. (in Chinese))
    [8] 喻文学, 宴启鹏. 青藏公路多年冻土地区路基冻融变形的初步分析[J]. 西安公路交通学院学报, 1986, 6(2): 49-70.
    (YU Wen-xue, YAN Qi-peng.Primary analysis of the roadbed deformation of Qinghai-Tibet highway in the permafrost regions[J]. Journal of Xi'an Highway University, 1986, 6(2): 49-70. (in Chinese))
    [9] YU F, QI J L, YAO X L, et al.In-situ monitoring of settlement at different layers under embankments in permafrost regions on the Qinghai-Tibet Plateau[J]. Engineering Geology, 2013, 160(13): 44-53.
    [10] H A崔托维奇. 冻土力学[M]. 张长庆, 朱元林, 译. 北京: 科学出版社, 1985: 11-13.
    (TSYTOVICH H A.Mechanics of frozen soil[M]. ZHANG Chang-qing, ZHU Yuan-lin, trans. Beijing: Science Press, 1985: 11-13. (in Chinese))
    [11] 朱元林, 张家懿. 冻土的弹性变形及压缩变形[J]. 冰川冻土, 1982, 4(3): 29-39.
    (ZHU Yuan-lin, ZHANG Jia-yi.Elastic and compressive deformation of frozen soils[J]. Journal of Glaciology and Geocryology, 1982, 4(3): 29-39. (in Chinese))
    [12] 郑波, 张建明, 马小杰, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3064-3069.
    (ZHENG Bo, ZHANG Jian-ming, MA Xiao-jie, et al.Study on compression deformation of warm and ice-rich frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3064-3069. (in Chinese))
    [13] 苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375.
    (SU Kai, ZHANG Jian-ming, LIU Shi-wei, et al.Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375. (in Chinese))
    [14] 阮国锋, 张建明, 刘世伟, 等.青藏高原高温高含冰量冻土压缩试验研究[J].水文工程地质, 2014, 41(2): 50-56.
    (RUAN Guo-feng, ZHANG Jian-ming, LIU Shi-wei, et al.Compression experimental research on warm and ice-rich permafroston the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology, 2014, 41(2): 50-56. (in Chinese))
    [15] MA L, QI J L, YU F, et al.Experimental study on variability in mechanical propertiesof a frozen sand as determined in triaxial compression tests[J]. Acta Geotechnica, 2016, 11(1): 61-70.
    [16] GB/T50123—1999土工试验方法标准[S]. 1999.
    (GB/T50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [17] 陈希哲, 叶菁. 土力学地基基础[M]. 北京: 清华大学出版社, 2013.
    (CHEN Xi-zhe, YE Jing.Soil mechanicsand foundation[M]. Beijing: Tsinghua University Press, 2013. (in Chinese))
    [18] RICHART F E Jr, HALL J R, WOORS R D. Vibration of soils and foundations[M]. Englewood Cliffs: Prentice-Hall, 1970.
    [19] PESTANA J M, WHITTLE A J.Compression model for cohesionless soils[J]. Géotechnique, 1995, 45(45): 611-631.
    [20] 尹振宇, 顾晓强, 金银富.土的小应变刚度特性[M]. 上海: 同济大学出版社, 2017.
    (YIN Zhen-yu, GU Xiao-qiang, JIN Yin-fu.Stiffness characteristics of soil at small strain[M]. Shanghai: Tongji University Press, 2017. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-03
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回