• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于混合量热原理的冻土比热容测试方法

李顺群, 王杏杏, 夏锦红, 申道明

李顺群, 王杏杏, 夏锦红, 申道明. 基于混合量热原理的冻土比热容测试方法[J]. 岩土工程学报, 2018, 40(9): 1684-1689. DOI: 10.11779/CJGE201809015
引用本文: 李顺群, 王杏杏, 夏锦红, 申道明. 基于混合量热原理的冻土比热容测试方法[J]. 岩土工程学报, 2018, 40(9): 1684-1689. DOI: 10.11779/CJGE201809015
LI Shun-qun, WANG Xing-xing, XIA Jin-hong, SHEN Dao-ming. Test methods for specific heat capacity of frozen soil based on principles of mixing calorimetry[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1684-1689. DOI: 10.11779/CJGE201809015
Citation: LI Shun-qun, WANG Xing-xing, XIA Jin-hong, SHEN Dao-ming. Test methods for specific heat capacity of frozen soil based on principles of mixing calorimetry[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1684-1689. DOI: 10.11779/CJGE201809015

基于混合量热原理的冻土比热容测试方法  English Version

基金项目: 国家自然科学基金项目(41472253); 天津市自然科学基金重点项目(16JCZDJC39000); 天津市建设系统科学技术项目发展计划项目(2016-25); 天津市建设工程技术研究所2017年财政资金项目(JGY18-01)
详细信息
    作者简介:

    李顺群(1971- ),男,博士,博士后,教授,从事土力学和基础工程方面的教学和研究工作。E-mail: lishunqun@sina.com。

    通讯作者:

    李顺群,E-mail:lishunqun@sina.com

  • 中图分类号: TU411.3

Test methods for specific heat capacity of frozen soil based on principles of mixing calorimetry

  • 摘要: 土的比热容是冻结法施工中的重要参数,但既有混合量热法得到比热容是某一负温到平衡正温这一阶段的平均比热容而不是该负温点的比热容。根据黏土在冻结过程中孔隙水的相变随负温增加逐渐发生的客观事实,基于传统混合量热法建立了冻土比热容的递推算法。首先,待测试冻土试样分别由某一负温的左右两个微小增量开始,经混合量热法各个步骤后到达热平衡状态。则由负温开始至热平衡状态,试样吸收的热量Q,必然等于负温至0℃和0℃至平衡温度这两个阶段热量交换Q1Q2的代数和。由于不存在相变,试样从0℃至热交换平衡温度需要的热量可以由常规的混合量热法获得。因此,试样由负温开始至0℃的热量可以通过两者相减得到,并可进一步得到试样由该负温左侧增量升温至该负温右侧增量需要的热量。最终,试样在该负温点的比热容可以根据比热容的定义得到。本文建立的冻土比热容递推算法能得到某温度点的比热容而非某温度段的平均比热容,且包含了潜热的贡献,因而更为合理有效。
    Abstract: The specific heat capacity of soil is an important parameter in the ground freezing method. However, the specific heat capacity obtained by the exiting mixed calorimetric methods is the average specific heat capacity from a negative temperature to the equilibrium positive temperature rather than that at the negative temperature. According to the fact that the phase transition of pore water occurs gradually with temperature change in freezing process, a recursive formula to the specific heat capacity of obtain frozen soil is established based on the exiting mixing calorimetry methods. First of all, two small equal temperature increments, a negative and a positive, are set for the negative temperature of the frozen soil. Then, two samples are prepared respectively at the two temperatures and the mixing calorimetry method is performed in order to arrive at each thermal equilibrium state. From the negative temperature state to the thermal equilibrium one, the heat absorbed by the sample, Q, will be equal to the total aequum of the two stages, Q1 for negative temperature to 0℃ and Q2 for 0℃ to equilibrium temperature. Since there is no phase change and latent heat, the heat required by the sample from 0℃ to the equilibrium temperature can be obtained by the conventional mixing calorimetry. Therefore, the required heat for the sample from negative temperature to 0℃ can be obtained by subtracting Q2 from Q. And Further more, the required heat can be obtained for the given temperature from the negative increment to the positive increment. Finally, the specific heat capacity of the sample at the negative temperature can be obtained according to the definition of the specific heat capacity. From the proposed method, the capacity at any temperature, other than an average over a temperature range, can be calculated. And the proposed method can take latent heat into account. Therefore, it is more reasonable and effective.
  • [1] 齐吉琳, 马巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1): 133-143.
    (QI Ji-lin, MA Wei.State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133-143. (in Chinese))
    [2] 孙振华. 多年冻土原状样热学性质研究[D]. 长春: 吉林大学, 2008.
    (SUN Zhen-hua.Research on the thermal character of undisturbed permafrost sample[D]. Changchun: Jinlin University, 2008. (in Chinese))
    [3] 刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129.
    (LIU Shi-wei, ZHANG Jian-ming.Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129. (in Chinese))
    [4] ABU-HAMDEH N H. Thermal properties of soils as affected by density and water content[J]. Biosystems Engineering, 2003, 86(1): 97-102.
    [5] RANKINEN K, KARVONEN T, BUTTERFIELD D.A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing[J]. Hydrology and Earth System Sciences, 2004, 8(4): 706-716.
    [6] OCHSNER T E, HORTON R, REN T.A new perspective on soil thermal properties[J]. Soil Science Society of America Journal, 2001, 65: 1641-1647.
    [7] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
    (XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin.Physics of frozen soil[M]. Beijing: Science Press, 2010. (in Chinese))
    [8] 赵小明, 赵冠春. 绝热量热法测量比热容容的实验研究[J]. 西安交通大学学报, 1995, 29(5): 12-17.
    (ZHAO Xiao-ming, ZHAO Guan-chun.Experimental study for specific heat capacity with adiabatic calorimetry[J]. Journal of Xi An Jiaotong University, 1995, 29(5): 12-17. (in Chinese))
    [9] 苏天明, 刘彤, 李晓昭, 等. 南京地区土体热物理性质测试与分析[J]. 岩石力学与工程学报, 2006, 25(6): 1278-1283.
    (SU Tian-ming, LIU Tong, LI Xiao-zhao, et al.Test and analysis of thermal properties of soil in Nanjing district[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1278-1283. (in Chinese))
    [10] 王补宣, 江亿. 利用热探针在现场同时测定松散介质αλ的“加热-冷却法”[J]. 工程热物理学报, 1985, 6(3): 49-54.
    (WANG Bu-xuan, JIANG Yi.The “heating-cooling method” for measuring thermal diffusivity and conductivity of dispersed medium in the scene with a probe[J]. Journal of Engineering Thermophysics, 1985, 6(3): 49-54. (in Chinese))
    [11] 刘宏伟, 张喜发, 冷毅飞. 大兴安岭多年冻土骨架比热容测定及经验值[J]. 低温建筑技术, 2009, 31(8): 96-97.
    (LIU Hong-wei, ZHANG Xi-fa, LENG Yi-fei.Determination and empirical value on specific heat of permafrost skeleton in Da Hinggan Mountains[J]. Low Temperature Architecture Technology, 2009, 31(8): 96-97. (in Chinese))
    [12] 王丽霞, 胡庆立, 凌贤长, 等. 青藏铁路冻土未冻水含量与热参数试验[J]. 哈尔滨工业大学学报, 2007, 39(10): 1660-1663.
    (WANG Li-xia, HU Qing-li, LING Xian-chang, et al.Test study on unfrozen water content and thermal parameters of Qinghai-Tibet railway frozen silty clay[J]. Journal of Harbin Institute of Technology, 2007, 39(10): 1660-1663. (in Chinese))
    [13] 冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
    (LENG Yi-fei, ZHANG Xi-fa, YANG Feng-xue, et al.Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese))
  • 期刊类型引用(25)

    1. 王朋飞,祝壮,孙中光,曲越,张衡,李培现. 长壁工作面开采时间间隔对倾向主断面地表沉陷的影响研究. 采矿与安全工程学报. 2025(02): 282-293 . 百度学术
    2. 丁星丞,李培现,康新亮,王明亮,张涛,郝登程. 融合概率积分法与SBAS-InSAR的开采沉陷计算方法. 矿业科学学报. 2025(01): 48-56 . 百度学术
    3. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 . 百度学术
    4. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 . 百度学术
    5. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 . 百度学术
    6. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 . 百度学术
    7. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 . 百度学术
    8. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 . 百度学术
    9. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 . 百度学术
    10. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 . 百度学术
    11. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 . 百度学术
    12. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 . 百度学术
    13. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 . 百度学术
    14. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 . 百度学术
    15. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 . 百度学术
    16. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 . 百度学术
    17. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 . 百度学术
    18. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 . 百度学术
    19. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 . 百度学术
    20. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 . 百度学术
    21. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 . 百度学术
    22. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 . 百度学术
    23. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 . 百度学术
    24. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 . 百度学术
    25. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  397
  • HTML全文浏览量:  5
  • PDF下载量:  160
  • 被引次数: 41
出版历程
  • 收稿日期:  2017-03-31
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回