• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深层搅拌水泥土基底加固层的三维随机有限元分析

刘勇, 李福豪, 陈健, 胡俊

刘勇, 李福豪, 陈健, 胡俊. 深层搅拌水泥土基底加固层的三维随机有限元分析[J]. 岩土工程学报, 2018, 40(8): 1542-1548. DOI: 10.11779/CJGE201808022
引用本文: 刘勇, 李福豪, 陈健, 胡俊. 深层搅拌水泥土基底加固层的三维随机有限元分析[J]. 岩土工程学报, 2018, 40(8): 1542-1548. DOI: 10.11779/CJGE201808022
LIU Yong, LEE Fook-Hou, CHEN Elton J, HU Jun. Three-dimensional random finite element analysis of cement-admixed soil slab for stabilization of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1542-1548. DOI: 10.11779/CJGE201808022
Citation: LIU Yong, LEE Fook-Hou, CHEN Elton J, HU Jun. Three-dimensional random finite element analysis of cement-admixed soil slab for stabilization of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1542-1548. DOI: 10.11779/CJGE201808022

深层搅拌水泥土基底加固层的三维随机有限元分析  English Version

基金项目: 国家自然科学基金项目(51608218); 中国博士后科学基金面上项目(2015M572144); 留学人员科技活动择优资助启动类项目(人社部函[2016]176-3)
详细信息
    作者简介:

    刘 勇(1982- ),男,湖南娄底人,教授,主要从事岩土工程及地质灾害风险管控等方面的研究工作。E-mail: liuy203@whu.edu.cn。

    通讯作者:

    陈健,E-mail:eltonjchen@hust.edu.cn

Three-dimensional random finite element analysis of cement-admixed soil slab for stabilization of foundation pits

  • 摘要: 在软土基坑开挖过程中,围护结构的最大侧向位移往往出现在开挖面以下。常用的防范方法是采用深层搅拌法对设计深度以下2~3 m的软土层进行水泥加固处理,形成水泥土加固层以减少围护结构的侧向位移。由于水泥土的强度具有显著的空间变异性,工程设计中通常采用较为保守的整体强度设计值。考虑深层搅拌桩形成过程中的两种主要不确定性因素:桩身位置不确定性和桩身内部水泥土强度不均匀性,将水泥土加固层的强度模拟为随机场,且将其作为材料变量结合有限元仿真模拟进行受力分析。分析结果表明水泥土加固层的设计强度可表示为钻心取样强度平均值减去t倍标准差,对系数t进行了详细探讨,所得结果可为今后类似工程设计提供参考依据。
    Abstract: In a deep excavation, the maximum displacement of earth retaining structures (e.g., diaphragm wall) usually occurs below the information level. In order to reduce the displacement, the deep cement mixing technique is often used to improve the ground 2 to 3 m below the information level. Because of the high heterogeneity in the strength of cement-admixed soils, the conservative design value for strength is generally adopted in practice. In this study, two main sources for the heterogeneity in the strength of cement-admixed soils are considered, namely, the positioning error in column installation and the non-uniformity within each single column. The unconfined compressive strength of cement-admixed soils is simulated as the three-dimensional random field, and the random field serves as the input parameter in finite element analysis. Based on such kind of finite-element analysis, the design overall strength of a cement-treated slab subjected to lateral loading can be considered as the mean value minus its standard deviation multiplied by a reduction factor. The reduction factor is explored for various scenarios. The results of this study are likely to offer guidelines for comparable projects in practice.
  • [1] LEE F H, CHIN K G, XIAO H W, et al.Keynote lecture: cement-soil treatment in underground construction[C]// Indian Geotechnical Conference 2013, Indian Geotechnical Society (IGS). Roorkee, 2013: 1-15.
    [2] 沈水龙, 许烨霜, 常礼安. 深层搅拌桩周围土体劈裂的研究与分析[J]. 岩土力学, 2006, 27(3): 378-382.
    (SHEN Shui-long, XU Ye-shuang, CHANG Li-an.Analysis research on soil fracturing around deep mixing column[J]. Rock and Soil Mechanics, 2006, 27(3): 378-382. (in Chinese))
    [3] LIU Y, ZHENG J J, GUO J.Statistical evaluation for strength of pile by deep mixing method[C]// Proceedings of the Second International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation. Nanjing, 2008: 195-201.
    [4] LIU S Y, DU Y J, YI Y L, et al.Field investigations on performance of T-shaped deep mixed soil cement column-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 718-727.
    [5] 郑俊杰, 刘勇, 郭嘉, 等. 桩基检测合格率的概率分布及可靠性评估[J]. 岩土工程学报, 2009, 31(11): 1660-1664.
    (ZHENG Jun-jie, LIU Yong, GUO Jia, et al.Probabilistic analysis and reliability assessment for acceptance rate of foundation pile testing[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1660-1664. (in Chinese))
    [6] CHEN J, LEE F H, NG C C.Statistical analysis for strength variation of deep mixing columns in Singapore[C]// Geo-Frontiers 2011 Advances in Geotechnical Engineering Dallas, 2011: 576-584.
    [7] LIU Y, JIANG Y J, LEE F H.Some issues in core strength measurement in cement-soil treatment for deep excavation - field data study[C]// The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Fukuoka, 2015: 1563-1566.
    [8] KASAMA K, WHITTLE A J, ZEN K.Effect of spatial variability on the bearing capacity of cement-treated ground[J]. Soils and Foundations, 2012, 52(4): 600-619.
    [9] MCGINN A J.Performance of deep excavations in Boston marine clay stabilized by deep mixing methods[D]. Cornell: Cornell University, 2003.
    [10] LARSSON S, MALM R, CHARBIT B, et al.Finite element modelling of laterally loaded lime-cement columns using a damage plasticity model[J]. Computers and Geotechnics, 2012, 44: 48-57.
    [11] LEE F H, LEE C H, DASARI G R.Centrifuge modelling of wet deep mixing processes in soft clays[J]. Géotechnique, 2006, 56(10): 677-691.
    [12] CHEN J E, LIU Y, LEE F H.A statistical model for the unconfined compressive strength of deep mixed columns[J]. Géotechnique, 2016, 66(5): 351-365.
    [13] NAMIKAWA T, KOSEKI J.Effects of spatial correlation on compression behavior of cement-treated column[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1346-1359.
    [14] JGJ 79—2012建筑地基处理技术规范[S]. 2012.
    (JGJ 79—2012 Technical code for ground treatment of buildings[S]. 2012. (in Chinese))
    [15] LIU Y, LEE F H, QUEK S T, et al.Effect of spatial variation of strength and modulus on the lateral compression response of cement-admixed clay slab[J]. Géotechnique, 2015, 65(10): 851-865.
    [16] LIU Y, JIANG Y, XIAO H, et al.Determination of representative strength of deep cement-mixed clay from core strength data[J]. Géotechnique, 2017, 67(4): 350-364.
    [17] SHINOZUKA M, DEODATIS G.Simulation of multi- dimensional Gaussian stochastic fields by spectral representation[J]. Applied Mechanics Reviews, 1996, 49(1): 29-53.
    [18] PHOON K K, HUANG H W, QUEK S T.Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion[J]. Probabilistic Engineering Mechanics, 2005, 20(2): 188-198.
    [19] CHEN E J, DING L Y, LIU Y, et al.On spectral representation method and Karhunen-Loève expansion in modelling construction materials properties[J]. Achieves of Civil and Mechanical Engineering, 2018, 18: 769-783.
    [20] LIU Y, LEE F H, QUEK S T, et al.Modified linear estimation method for generating multi-dimensional multi-variate Gaussian field in modelling material properties[J]. Probabilistic Engineering Mechanics, 2014, 38: 42-53.
    [21] LARSSON S, STILLE H, OLSSON L.On horizontal variability in lime-cement columns in deep mixing[J]. Géotechnique, 2005, 55(1): 33-44.
    [22] KINGSLEY H W.Probability distribution of strength parameters in uniform soils[J]. Journal of Engineering Mechanics, 1986, 112(3): 345-350.
    [23] 刘勇, 郑俊杰, 郭嘉. β分布的参数确定及其在岩土工程中的应用[J]. 岩土工程技术, 2006, 20(5): 240-244.
    (LIU Yong, ZHENG Jun-jie, GUO Jia.Determination of parameters for beta distribution and its applications in geotechnical engineering[J]. Geotechnical Engineering Technique, 2005, 20(5): 240-244. (in Chinese))
    [24] GRIGORIU M.Applied non-Gaussian processes: examples, theory, simulation, linear random vibration, and MATLAB solutions[M]. London: Prentice-Hall International (UK) Limited, 1995.
    [25] LIU Y, QUEK S T, LEE F H.Translation random field with marginal beta distribution in modeling material properties[J]. Structural Safety. 61: 57-66.
    [26] LIU Y, SHIELDS M D.A direct simulation method and lower-bound estimation for a class of gamma random fields with applications in modelling material properties[J]. Probabilistic Engineering Mechanics, 2017, 47: 16-25.
    [27] LIU Y, HU J, WEI H, et al.A direct simulation algorithm for a class of beta random fields in modelling material properties[J]. Computer Methods in Applied Mechanical and Engineering, 2017, 326: 642-655.
    [28] LEE F H, LEE Y, CHEW S H, et al.Strength and modulus of marine clay-cement mixes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 178-186.
    [29] DAMES & MOORE.Singapore mass rapid transit system - detailed geotechnical study interpretative report[R]. Singapore: Prepared for Provisional Mass Rapid Transit Authority, 1983.
    [30] Joint Committee of Structural Safety (JCSS). Probabilistic model code part 1: basis of design[M]. Paris: RILEM Publications SARL, 2001.
    [31] HONJO Y.A probabilistic approach to evaluate shear strength of heterogeneous stabilized ground by deep mixing method[J]. Soils and Foundations, 1982, 22(1): 23-38.
  • 期刊类型引用(21)

    1. 魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 . 百度学术
    2. 朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 . 百度学术
    3. 周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 . 百度学术
    4. 陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 . 百度学术
    5. 于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 . 百度学术
    6. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 . 百度学术
    7. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 . 百度学术
    8. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
    9. 郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 . 百度学术
    10. 周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 . 百度学术
    11. 张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 . 百度学术
    12. 秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 . 百度学术
    13. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 . 百度学术
    14. 刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 . 百度学术
    15. 周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 . 百度学术
    16. 马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 . 百度学术
    17. 吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 . 百度学术
    18. 黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 . 百度学术
    19. 吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 . 百度学术
    20. 胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 . 百度学术
    21. 郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  333
  • HTML全文浏览量:  14
  • PDF下载量:  271
  • 被引次数: 29
出版历程
  • 收稿日期:  2016-03-06
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回