Finite element limit analysis of slope stability considering spatial variability of soil strengths
-
摘要: 当土性参数空间变异性较大时,极限平衡法得到的滑移面不尽合理。阐述了基于广义变分原理的有限元极限分析方法,采用混合有限元方法,构筑了线性应力三角形单元与线性速度三角形单元,结合强度折减法与线性规划算法,建立了边坡稳定安全系数上下限分析方法,分析了土的抗剪强度参数空间变异性对边坡稳定性的影响,并与3种典型极限平衡法进行了对比。结果表明,FELA方法可有效搜索边坡临界滑移面,并给出安全系数的严格上下限。对于简单均质边坡,有限元极限分析与极限平衡法结果接近,极限平衡法结果大多位于极限分析的上下限内;对于空间变异性较大的边坡,有限元极限分析法可以有效搜索可能的多种临界滑移面,而极限平衡法则存在显著偏差,且往往高估滑坡风险。强度参数的空间变异性还导致边坡安全系数分布形式变化显著,仅采用安全系数无法反应这一变化。根据安全系数的分布形式,给出了土性参数设计值建议。Abstract: The slip surface obtained by the limit equilibrium method is not reasonable when the spatial variability of soil parameters is large. The finite element limit analysis method, FELA in simple, based on the generalized variational principle is introduced. By using the mixed finite element technology, the linear stress triangular elements and linear velocity triangular elements are proposed. By use of the strength reduction method and the optimization algorithm, the strict upper bound and lower bound of the safety factor of slopes are calculated. The influences of spatial variability of soil shear strength parameters on slope stability are analyzed, and the results are compared with those of the limit equilibrium methods. The results show that compared to the limit equilibrium method, the proposed FELA can search the critical slip surfaces effectively under spatial variability of soil strengths and provide the strict upper and lower bounds of safety factors of slopes. But the limit equilibrium method will search for unreasonable slip surfaces, and often overestimate the risk of landslides. The spatial variability of soil strengths results in the significant change in the distribution of safety factors. But the single safety factor can not reflect the change. According to the distribution of safety factors, the design value of soil parameters is suggested.
-
[1] DUNCAN J M.State of the art: limit equilibrium and finite-element analysis of slopes[J]. Geotech Engng, 1996, 122(7): 577-596. [2] ELRAMLY H, MORGENSTERN N R, CRUDEN D M.Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal, 2002, 39(3): 665-683. [3] CHO S E.Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(7): 975-984. [4] GRIFFITHS D V, LANE P A.Slope stability analysis by finite elements[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1999, 49(3): 387-403. [5] CHEN W F, LIU X L.Limit analysis in soil mechanics[M]. Amsterdam: Elsevier Science Publishers, 1990. [6] 王敬林, 郑颖人, 陈瑜瑶, 等. 岩土材料极限分析上界法的讨论[J]. 岩土力学, 2003, 24(4): 538-544.
(WANG Jing-lin, ZHENG Ying-ren, CHEN Yu-yao, et al.Discussion on upper-bound method of limit analysis for geotechenical material[J]. Rock and Soil Mechanics, 2003, 24(4): 538-544. (in Chinese))[7] 王均星, 王汉辉, 吴雅峰. 土坡稳定的有限元塑性极限分析上限法研究[J]. 岩石力学与工程学报, 2005, 23(10): 1867-1873.
(WANG Jun-xing, WANG Han-hui, WU Ya-feng.Stability analysis of soil slope by finite element method with plastic limit upper bound[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 23(10): 1867-1873. (in Chinese))[8] 赵明华, 张锐, 雷勇. 基于可行弧内点算法的上限有限单元法优化求解[J]. 岩土工程学报, 2014, 36(4): 604-611.
(ZHAO Ming-hua, ZHANG Rui, LEI Yong.Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. (in Chinese))[9] LYSMER J.Limit analysis of plane problems in soil mechanics[J]. J Soil Mech Found, 1970, 96(SM4): 1311-1334. [10] ANDERHEGGEN E, KNOPFEL H.Finite element limit analysis using linear programming[J]. Int J Solids Struct, 1972, 8(12): 1413-1431 [11] MAKRODIMOPOULOS A, MARTIN C M.Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. Int J Numer Analyt Methods Geomech, 2007, 31(6): 835-865. [12] SLOAN S W.Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-571. [13] KRABBENHOFT K, LYAMIN A V.Strength reduction finite-element limit analysis[J]. Géotechnique Letters, 2015, 5(4): 250-253. [14] YU S, ZHANG X, SLOAN S W.A 3D upper bound limit analysis using radial point interpolation meshless method and second‐order cone programming[J]. International Journal for Numerical Methods in Engineering, 2016, 108(13): 1686-1704. [15] HUANG J, LYAMIN A V, GRIFFITHS D V, et al.Quantitative risk assessment of landslide by limit analysis and random fields[J]. Computers & Geotechnics, 2013, 53(3): 60-67. [16] LYAMIN A V, SLOAN S W.Upper bound limit analysis using linear finite elements and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 12(2): 181-216. [17] LI K S, LUMB P.Probabilistic design of slopes[J]. Canadian Geotechnical Journal, 1987, 24(4): 520-535. [18] PHOON K K, HUANG S P, QUEK S T.Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303. [19] PHOON K K, KULHAWY F H.Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624. [20] 蒋水华, 李典庆, 曹子君, 等. 考虑参数空间变异性的边坡可靠度及其敏感性分析多重响应面法[J]. 防灾减灾工程学报, 2015, 35(5): 592-598.
(JIANG Shui-hua, LI Dian-qing, CAO Zi-jun, et al.Multiple response surfaces method for probabilistic analysis and reliability sensitivity analysis of slopes considering spatially varying soil properties[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5): 592-598. (in Chinese))[21] 雷坚, 陈朝晖, 黄景华. 饱和渗透系数空间变异性对边坡稳定性的影响[J]. 武汉大学学报 (工学版), 2016, 49(6): 831-837.
(LEI Jian, CHEN Zhao-hui, HUANG Jing-hua.Effects of the spatial variability of saturated permeability on slope stability[J]. Engineering Journal of Wuhan University, 2016, 49(6): 831-837. (in Chinese)) -
期刊类型引用(29)
1. 彭普,李泽,张小艳,申林方,许芸. 土质边坡的单元失效概率与失效模式研究. 工程力学. 2024(01): 193-207 . 百度学术
2. 张亚平,李克钢,李明亮,秦庆词,王航龙. AHP-Critic法正态云模型在边坡稳定性评价中的应用. 有色金属工程. 2024(03): 146-155 . 百度学术
3. 甘永波,李亚军,李瑞杰,秦浩东,张杰,张彬. 考虑土体强度参数随机场的横向加载管-土相互作用分析. 水利水运工程学报. 2024(02): 143-153 . 百度学术
4. 楼晓明,孙逸玮,张蓟. 软土地基沟渠开挖诱发远处围堰失稳的实例分析. 水利水电技术(中英文). 2024(S1): 151-159 . 百度学术
5. 明思成,仉文岗,何昱苇,陈龙龙,覃长兵. 考虑各向异性空间变异性的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(04): 60-74 . 百度学术
6. 周家文,陈明亮,瞿靖昆,胡宇翔,夏茂圃,蒋楠,李海波,范刚. 水库滑坡灾害致灾机理及防控技术研究与展望. 工程科学与技术. 2023(01): 110-128 . 百度学术
7. 朱磊,高欣悦,万愉快,丁一民. 地震力对边坡可靠度的影响. 科学技术与工程. 2023(10): 4324-4330 . 百度学术
8. 彭乐平,张桂银,孙鹏. 竹仔岭花岗岩矿边坡稳定性研究. 采矿技术. 2023(03): 52-56 . 百度学术
9. 刘昆珏,随意,程晓辉,陈朝晖,普利坚. 考虑围岩参数空间变异性的连拱隧道稳定性分析. 地下空间与工程学报. 2023(03): 911-920 . 百度学术
10. 曾勇,李亚军,严俊,田振华. 考虑土体强度参数深度依赖性的非平稳随机场边坡滑动深度和体积分析. 水资源与水工程学报. 2023(03): 174-183+192 . 百度学术
11. 黄延,陈雪亮. 基于不同排布型式的弧形抗滑桩边坡加固效果研究. 能源与环保. 2022(04): 24-29+44 . 百度学术
12. 许晓亮,张家富,曾林风,徐健文,史为政. 考虑网格自适应的边坡可靠性随机有限元极限分析研究. 三峡大学学报(自然科学版). 2022(06): 48-57 . 百度学术
13. 王小龙. 多级路堑边坡地震稳定性可靠度分析. 甘肃科技. 2022(19): 9-13+17 . 百度学术
14. 郑晓珣. 基于流固耦合的强度折减法的地下水渗流对隧道稳定性的影响研究. 能源与环保. 2022(11): 284-289 . 百度学术
15. 缑变彩,王帆. 基于稀疏混沌多项式的边坡可靠度分析方法. 土木工程与管理学报. 2021(02): 198-204+210 . 百度学术
16. 严柏杨,张京伍,朱德胜,葛彬,舒爽. 考虑土体不排水强度非平稳性对条形基础承载力影响的可靠度分析. 河北工程大学学报(自然科学版). 2021(01): 20-25 . 百度学术
17. 王鹏. 不同因素对填筑路堤边坡稳定性影响分析. 黑龙江交通科技. 2021(04): 73-75 . 百度学术
18. 刘辉,郑俊杰,章荣军. 考虑不排水抗剪强度空间变异性的黏土边坡系统失效概率分析. 岩土力学. 2021(06): 1529-1539 . 百度学术
19. 孙志豪,谭晓慧,孙志彬,林鑫,姚玉川. 基于上限分析的空间变异土质边坡可靠度. 岩土力学. 2021(12): 3397-3406 . 百度学术
20. 孙锐,杨峰,阳军生,赵乙丁,郑响凑,罗静静,姚捷. 基于二阶锥规划与高阶单元的自适应上限有限元研究. 岩土力学. 2020(02): 687-694 . 百度学术
21. 易红卫,樊陵姣,谌涛. 基于有限元分析的矿山边坡自动数值建模与分析研究. 矿冶工程. 2020(03): 30-33 . 百度学术
22. 陈朝晖,黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型. 岩土工程学报. 2020(07): 1247-1256 . 本站查看
23. 刘爱娟,崔玉龙,刘铁新. 地震边坡动态临界加速度计算中抗剪强度参数概率分布分析. 地震工程学报. 2020(05): 1179-1186 . 百度学术
24. 张云雁. 基于GS-SVM的边坡稳定性预测模型. 水利水电技术. 2020(11): 205-209 . 百度学术
25. 黄俊,赵江,段祥睿,张洁. 基于强度折减法的抗滑桩加固边坡可靠度分析. 土木与环境工程学报(中英文). 2020(06): 11-18 . 百度学术
26. 曾韬睿,王林峰,朱洪州. 基于修正的传递系数法的粉土质边坡冻融稳定性分析. 科学技术与工程. 2019(09): 206-213 . 百度学术
27. 李泽发,吴震宇,卢祥,裴亮,杨哲. 抗拉强度空间变异性对重力坝地震开裂的影响分析. 工程科学与技术. 2019(04): 116-124 . 百度学术
28. 梁庆国,房军,张晋东,张延杰,蒲建军,王飞. 兰州轨道交通扰动场地黄土浸水试验研究. 地质力学学报. 2018(06): 803-812 . 百度学术
29. 吴志轩,杨军,邱天琦,沈兆普,梁宇钒. 基于FELA的随机场方法在考虑降雨入渗的边坡开挖稳定性分析中的应用. 地质力学学报. 2018(06): 813-821 . 百度学术
其他类型引用(46)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 75