Infiltration grouting mechanism of porous media considering diffusion paths of grout
-
摘要: 多孔介质注浆的扩散方式以渗透注浆为主,传统的多孔介质渗透注浆往往忽略了浆液渗透过程中的扩散路径,导致理论结果与实际偏差较大。基于对多孔介质浆液渗透过程中扩散路径分析,根据浆液扩散运动方程,建立了考虑浆液扩散路径的多孔介质渗透注浆模型,设计了一套多孔介质渗透注浆扩散模拟实验装置,并采用常规注浆材料-水泥浆液,获得不同被注介质渗透率及不同注浆速率下的注浆压力的时空变化规律。研究结果表明:考虑浆液扩散路径的多孔介质浆液渗透注浆模型计算值为试验值的1.1~1.3倍,计算值与试验值误差在允许的范围之内,所建模型可较好的描述了浆液渗透扩散过程;不考虑浆液扩散路径的多孔介质渗透注浆模型计算值为试验值的1.8~3.2倍,显著高估了注浆扩散过程的浆液压力。研究成果成功用于青岛地铁砂层治理工程,因此,在多孔介质渗透注浆扩散设计中应充分考虑浆液扩散路径。Abstract: The diffusion mode of grouting in porous media is mainly infiltration grouting, and the traditional infiltration grouting in porous media often neglects the diffusion paths in the process of slurry infiltration, resulting in a large deviation between the theoretical results and the actual ones. Based on the analysis of the diffusion paths in the slurry infiltration process of porous media, an infiltration grouting model for porous media considering slurry diffusion paths is established according to the equation for slurry diffusion. A set of infiltration grouting simulation experiment device for porous media is designed. The slurry-cement slurry is used to obtain the spatiotemporal variation of grouting pressure under different permeabilities of grouting media and grouting rates. The results show that the calculated values of slurry grouting model are 1.1 ~ 1.3 times the experimental ones, and the error between the calculated and experimental values is within the allowable range. The model can be used to describe the diffusion process of slurry infiltration. The calculated values of the infiltration grouting model for porous media, without considering the diffusion paths of slurry, are 1.8 ~ 3.2 times the experimental ones, and the slurry pressure of the grouting diffusion process is significantly overestimated. The research results have been applied in sand layer management of Qingdao metro. Therefore, the diffusion paths of slurry should be fully considered in the design of infiltration grouting in porous media.
-
Keywords:
- porous medium /
- infiltration /
- grouting /
- diffusion path /
- simulation test
-
[1] 邝键政, 昝月稳, 王 杰, 等. 岩土工程注浆理论与工程实例[M]. 北京: 科学出版社, 2001. (KUANG Jian-zheng, ZAN Yue-wen, WANG Jie, et al. Theory and project example of grout in geotechnical engineering[M]. Beijing: Science Press, 2001. (in Chinese)) [2] 韩伟伟. 基于渗滤效应的水泥浆液多孔介质注浆机理及其工程应用[D]. 济南: 山东大学, 2014. (HAN Wei-wei. Grouting mechanism and engineering application of cement grout in porous media based on percolation effect[D]. Jinan: Shandong University, 2014. (in Chinese)) [3] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报, 2005, 27(1): 69-73. (RUAN Wen-jun. Research on diffusion of grouting and basic properties of grouts[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 69-73. (in Chinese)) [4] 李术才, 刘人太, 张庆松, 等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32(12): 2415-2421. (LI Shu-cai, LIU Ren-tai, ZHANG Qing-song, et al. Research on C-S slurry diffusion mechanism with time-dependent behavior of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2415-2421. (in Chinese)) [5] SAADA Z, CANOU J, DORMIEUX L, et al. Evaluation of elementary filtration properties of a cement grout injected in a sand[J]. Canadian Geotechnical Journal, 2006, 43(12): 1273-1289. [6] CHUPIN O, SAIYOURI N, HICHER P Y. The effects of filtration on the injection of cement-based grouts in sand columns[J]. Transport in Porous Media, 2008, 72(2): 227-240. [7] SAADA Z, CANOU J, DORMIEUX L, et al. Modeling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 691-711. [8] KIM Y S, WHITTLE A J. Particle network model for simulating the filtration of a micro fine cement grout in sand[J]. Journal of Geotechnical and Geo-environmental Engineering, 2009, 135(2): 224-236. [9] 杨志全, 侯克鹏, 郭婷婷, 等. 基于考虑时变性的宾汉姆流体的渗透注浆机制研究[J]. 四川大学学报: 工程科学版, 2011, 43(增刊1): 67-72. (YANG Zhi-quan, HOU Ke-peng, GUO Ting-ting, et al. Study on penetration grouting mechanism based on Bingham fluid of time-dependent behavior[J]. Journal of Sichuan University:Engineering Science Edition, 2011, 43(S1): 67-72. (in Chinese)) [10] 叶 飞, 苟长飞, 刘燕鹏, 等. 盾构隧道壁后注浆浆液时变半球面扩散模型[J]. 同济大学学报: 自然科学版, 2012, 40(12): 1789-1794. (YE Fei, GOU Chang-fei, LIU Yan-peng, et al. Half-spherical surface diffusion model of shield tunnel back-filled grouts[J]. Journal of Tongji University: Natural Science, 2012, 40(12): 1789-1794. (in Chinese)) [11] 叶 飞, 苟长飞, 陈 治, 等. 盾构隧道黏度时变性浆液壁后注浆渗透扩散模型[J]. 中国公路学报, 2013, 26(1): 127-134. (YE Fei, GOU Chang-fei, CHEN Zhi, et al. Back-filled grouts diffusion model of shield tunnel considering its viscosity degeneration[J]. China Journal of Highway and Transport, 2013, 26(1): 127-134. (in Chinese)) [12] 刘 健, 张载松, 韩 烨, 等. 考虑黏度时变性的水泥浆液盾构壁后注浆扩散规律及管片压力模型的试验研究[J]. 岩土力学, 2015, 36(2): 361-368. (LIU Jian, ZHANG Zai-song, HAN Ye, et al. Backfilled grouting diffusion law and model of pressure on segments of shield tunnel considering viscosity variation of cement grout[J]. Rock and Soil Mechanics, 2015, 36(2): 361-368. (in Chinese)) [13] 杨 坪. 砂卵烁石层模拟注浆试验及渗透注浆机理研究[D]. 长沙: 中南大学, 2005. (YANG Ping. Simulated grouting test and mechanism of percolation grouting in sandstone shimmering stone layer[D]. Changsha: Central South University, 2005. (in Chinese)) [14] 钱自卫, 姜振泉, 曹丽文, 等. 弱胶结孔隙介质渗透注浆模型试验研究[J]. 岩土力学, 2013, 34(1): 139-142. (QIAN Zi-wei, JIANG Zhen-quan, CAO Li-wen, et al. Experiment study of penetration grouting model for weakly cemented porous media [J]. Rock and Soil Mechanics, 2013, 34(1): 139-142. (in Chinese)) [15] XU Peng, YU Bo-ming. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81. [16] 周子龙, 杜雪明, 陈 钊, 等. 考虑孔隙曲折效应的浆液扩散压力[J]. 中国有色金属学报, 2016, 26(8): 1721-1727. (ZHOU Zi-long, DU Xue-ming, CHEN Zhao. Pressure grout diffusion considering the effect of porosity[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8): 1721-1727. (in Chinese)) [17] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2010: 50-53. (KONG Xiang-yan. Advanced mechanics of fluids in porous media[M]. Hefei: University of Science and Technology of China Press, 2010: 50-53. (in Chinese)) [18] GB/T50123—1999 土工试验方法标准[S]. 1999. (GB/T50123—1999 Standard of geotechnical test method[S]. 1999. (in Chinese)) -
期刊类型引用(39)
1. 侯振坤,陈炫霖,唐孟雄,凌造,都喜东,徐峰,贺绍阳,梁仕华. 预应力混凝土管桩桩端侧后注浆理论及承载特性研究进展综述. 河南理工大学学报(自然科学版). 2025(01): 154-165 . 百度学术
2. 钟宏伟,秦鹏飞,卢再光,张颖. 富水砂土隧道注浆加固效果评价研究:以郑州地铁7号线砂土隧道为例. 西北地质. 2025(01): 315-322 . 百度学术
3. 马宇佳,孙超,赵一恺,陈宇轩,何佳乐. 中砂介质注浆加固效果研究. 浙江建筑. 2025(01): 80-83 . 百度学术
4. 秦鹏飞,陈涛,周想云. 砂质隧道复合注浆加固技术与其应用研究. 中国农村水利水电. 2025(03): 136-141+147 . 百度学术
5. 李海燕,夏茂哲,张锟,张波,孙怀凤,赵国东,韩俊飞,刘功杰,贺恩磊. 岩溶凹陷式露天矿山大流量涌水治理技术. 煤炭科学技术. 2024(01): 267-279 . 百度学术
6. 秦鹏飞,钟宏伟. 地铁隧道砂土劈裂注浆加固机理分析. 城市轨道交通研究. 2024(03): 30-36+42 . 百度学术
7. 马广兴,王东杰,陈立伟,边乐. 穿层钻孔帷幕注浆一体化技术的实践研究. 矿业研究与开发. 2024(04): 144-151 . 百度学术
8. 秦鹏飞. 高聚物注浆技术及其应用研究. 黄河科技学院学报. 2024(05): 56-63 . 百度学术
9. 莫浩,侯晓萍,赵卫全,黄勇. 迂曲度对盾构隧道管片注浆的影响. 科学技术与工程. 2024(17): 7319-7326 . 百度学术
10. 秦鹏飞,张颖,王柳舒. 非均质砂土劈裂注浆加固机理分析. 力学与实践. 2024(03): 609-616 . 百度学术
11. 易四海,仲锐,景胜强,朱伟,王越. 孔隙介质孔隙率对注浆改造影响的试验研究. 中国矿业. 2024(S1): 278-283 . 百度学术
12. 余永强,张程鑫,张纪云,范利丹,唐金召,苏洲虎. 砂土介质注浆扩散规律试验研究. 金属矿山. 2024(07): 66-74 . 百度学术
13. 张华磊,徐保杰,王开伟,束云龙. 不同粒径分布多孔介质的幂律流体渗透注浆机制. 采矿与安全工程学报. 2024(05): 1025-1035 . 百度学术
14. 侯晓萍,莫浩,赵卫全,黄勇. 基于分形理论的多孔介质渗透注浆机制. 长江科学院院报. 2024(09): 106-113 . 百度学术
15. 邓重青,李永雷,高玉超. 煤矿薄基岩区底砾层水害治理技术研究与应用. 山东煤炭科技. 2024(09): 152-157+163 . 百度学术
16. 施凌瑞,李宝华,雷明林,王国萍. 富水半成岩隧道处治方案研究. 价值工程. 2024(30): 50-53 . 百度学术
17. 秦鹏飞,王文菁. 基于渗滤效应的砂土注浆扩散机理分析. 中国水利水电科学研究院学报(中英文). 2024(06): 623-631 . 百度学术
18. 易四海,仲锐,景胜强,王越,朱伟. 注浆压力对孔隙介质注浆改造效果影响的试验研究. 华北科技学院学报. 2024(06): 1-6 . 百度学术
19. 秦鹏飞,朱翔,周想云. 基于分形理论的裂隙岩体渗透注浆机理研究. 煤炭学报. 2024(S2): 845-851 . 百度学术
20. 秦鹏飞,孙洪硕,陈晓红,杨光,梁一星. 考虑砂土压密特性的劈裂注浆机理分析. 实验技术与管理. 2023(01): 31-37+43 . 百度学术
21. 刘万光. 强采动大巷破碎煤柱水泥基浆液注浆渗透扩散规律研究. 科技和产业. 2023(01): 192-196 . 百度学术
22. 朱定桂,施成华,孙晓贺,肖国庆,安斌. 考虑迂曲度的水泥-水玻璃双液浆柱形渗透机制研究. 铁道科学与工程学报. 2023(05): 1800-1809 . 百度学术
23. 秦鹏飞,钟宏伟,刘坚,苏丹娜,孙卓宇. 考虑浆土应力耦合作用的劈裂注浆机理分析. 西南交通大学学报. 2023(03): 584-591 . 百度学术
24. 李金刚,白云飞. 井筒注浆浆液扩散规律及参数优化研究. 山西煤炭. 2023(01): 39-46+96 . 百度学术
25. 秦鹏飞,王莉,晋芳,李昂. 岩土工程不良地质注浆技术研究进展. 安阳工学院学报. 2023(04): 78-84 . 百度学术
26. 庞浩然,高艳华,徐兴芃,熊楚明. 粉细砂地层注浆加固技术的研究进展. 地基处理. 2023(05): 421-433 . 百度学术
27. 秦鹏飞. 非线性压密效应下砂土劈裂注浆机理研究. 工业建筑. 2023(12): 198-203+61 . 百度学术
28. 路乔,杨智超,杨志全,于荣霞,朱颖彦,杨溢,张碧华,王仁超,方迎潮,余东亮,刘浩,苏建坤. 考虑扩散路径的宾汉姆流体渗透注浆机制. 岩土力学. 2022(02): 385-394 . 百度学术
29. 罗勇,肖殿才,高翔. 薄基岩工作面上覆风氧化带地面预注浆改性技术工程实践. 煤炭技术. 2022(06): 134-139 . 百度学术
30. 刘元玺,李银平,施锡林,赵凯. 盐穴储气库微渗层注浆封堵试验研究. 岩土力学. 2022(S1): 23-34 . 百度学术
31. 孟龑,程棋锋,陈茜,吴晚霞,黄乙纯. 多孔介质注浆模拟试验研究进展. 现代隧道技术. 2021(01): 46-53 . 百度学术
32. 许超. 新集二矿1号煤层220106工作面底板灰岩地面超前区域探查治理及效果评价. 中国矿业. 2021(04): 120-127+133 . 百度学术
33. 陈鑫,袁昌. 多孔介质中Bingham型浆液柱状渗透规律研究. 采矿与安全工程学报. 2021(04): 800-809+856 . 百度学术
34. 于世波,王志修,原野,王贺. 矿山垮落大体积松散体中水泥-水玻璃浆液可控灌注原理及其应用. 工程地质学报. 2021(04): 1094-1104 . 百度学术
35. 董敏忠. 注浆纠偏隧道水平位移的数值模拟. 建筑科学与工程学报. 2021(06): 138-146 . 百度学术
36. 赵芳芳. 富水破碎岩体脉动注浆加固技术研究综述. 科技风. 2021(33): 77-79 . 百度学术
37. 尚宏波,靳德武,柳昭星,王皓,赵春虎,王晓东,石志远,王治宙. 地下含水层帷幕注浆单液水泥浆扩散规律研究. 煤炭科学技术. 2021(11): 134-141 . 百度学术
38. 白玉杰,曹广胜,侯玉花,杜童,王哲,杨婷媛. 超临界二氧化碳+水交替驱注入井极限关井时间计算. 特种油气藏. 2020(01): 162-168 . 百度学术
39. 周峰,许勇,朱锐,宋著,翟德志,牟育敏. 砂性地层注浆浆液扩散特性. 建筑科学与工程学报. 2020(05): 182-192 . 百度学术
其他类型引用(60)
计量
- 文章访问数: 355
- HTML全文浏览量: 23
- PDF下载量: 411
- 被引次数: 99