• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

钠钾盐梯度循环作用下高压实膨润土膨胀力衰变特性

陈永贵, 李全, 贾灵艳, 叶为民, 崔玉军, 陈宝

陈永贵, 李全, 贾灵艳, 叶为民, 崔玉军, 陈宝. 钠钾盐梯度循环作用下高压实膨润土膨胀力衰变特性[J]. 岩土工程学报, 2018, 40(5): 872-879. DOI: 10.11779/CJGE201805012
引用本文: 陈永贵, 李全, 贾灵艳, 叶为民, 崔玉军, 陈宝. 钠钾盐梯度循环作用下高压实膨润土膨胀力衰变特性[J]. 岩土工程学报, 2018, 40(5): 872-879. DOI: 10.11779/CJGE201805012
CHEN Yong-gui, LI Quan, JIA Ling-yan, YE Wei-min, CUI Yu-jun, CHEN Bao. Decay characteristics of swelling pressure of compacted bentonite under salinity gradient cycling[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 872-879. DOI: 10.11779/CJGE201805012
Citation: CHEN Yong-gui, LI Quan, JIA Ling-yan, YE Wei-min, CUI Yu-jun, CHEN Bao. Decay characteristics of swelling pressure of compacted bentonite under salinity gradient cycling[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 872-879. DOI: 10.11779/CJGE201805012

钠钾盐梯度循环作用下高压实膨润土膨胀力衰变特性  English Version

详细信息
    作者简介:

    陈永贵(1976- ),男,安徽宿松人,工学博士,教授,博士生导师,主要从事环境地质和非饱和土力学方面的研究。E-mail:cyg@tongji.edu.cn。

Decay characteristics of swelling pressure of compacted bentonite under salinity gradient cycling

  • 摘要: 高放废物深地质处置库近场环境中,高压实膨润土将长期遭受含盐地下水的循环化学作用,导致其膨胀性能不断衰变。针对干密度为1.7 g/cm3的高压实高庙子(GMZ)膨润土,分别开展了0.5 mol/L和1.0 mol/L两种盐梯度、NaCl-水-KCl和NaCl-水不同循环路径下的恒体积膨胀力试验,探讨盐梯度循环化学作用下其膨胀力的衰变特性。结果表明:盐梯度循环作用下,膨润土膨胀力的发展与离子种类、浓度和循环次数等因素有关。盐化阶段膨胀力不断降低,淡化阶段膨胀力有所提高;低盐度梯度循环下各阶段的稳定膨胀力均高于高盐度梯度循环时的膨胀力。随着循环次数的增加,稳定膨胀力逐渐下降,入渗溶液浓度越高,降幅越大,且衰减幅度随着循环次数的增加而减小。KCl溶液的入渗会引起膨润土发生矿物相变,膨胀力显著降低;当KCl溶液浓度达到一定值时,蒙脱石的充分溶解导致膨润土丧失膨胀能力。
    Abstract: During the long-term operation of a deep geological repository of high-level radioactive waste (HLW), the bentonite barrier is likely to experience the chemical cycling paths of groundwater with various chemical components. In this case, the swelling capacity of bentonite can be reduced to a certain degree. In this work, GMZ bentonite powder is densely compacted to a dry density of 1.7 g/cm3 to carry out the swelling pressure tests under the constant-volume conditions. The salinization-desalinization effect is investigated by cyclical infiltrations of NaCl solution and distilled water. Furthermore, the cation exchange effect is emphasized by sequential infiltrations of NaCl solution, distilled water and KCl solution. For both infiltration paths, the salt concentrations (0.5, 1 mol/L) are taken into account. The results show that the swelling pressure characteristics of GMZ bentonite depend on the ion species and salt concentration of infiltration solution as well as the number of chemical cycles. The salinization effect of salt solution results in the decrease in swelling pressure, while the infiltration of distilled water improves the swelling behaviors. The swelling pressure decreases with the salt concentration of infiltration solutions. The stable swelling pressure and its reduced degree gradually decrease against the number of chemical cycles. Under the infiltration of KCl solution, some of the montmorillonite is dissolved, which results in the significant decrease in swelling pressure. No swelling pressure will be measured for GMZ bentonite if the concentration of KCl solution is higher enough.
  • [1] LIU J, NERETNIEKS I. Physical and chemical stability of the bentonite buffer[R]. Stockholm: Royal Institute of Technology, 2006.
    [2] BERNER U R. Evolution of pore water chemistry during degradation of cement in a radioactive wasterepository environment[J]. Waste Management, 1992, 12(2/3): 201-219.
    [3] SÁNCHEZ L, CUEVAS J, RAM IREZ S, et al. Reaction kinetics of FEBEX bentonite in hyperalkalineconditions resembling the cement-bentonite interface[J]. Applied Clay Science, 2006, 33(2): 125-141.
    [4] NAKAYAMA S, SAKAMOTO Y, YAMAGUCHI T, et al. Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions[J]. Applied Clay Science, 2004, 27(1/2) : 53-65.
    [5] THATCHER K E, BOND A E, ROBINSON P, et al. A new hydro-mechanical model for bentonite resaturation applied to the SEALEX experiments[J]. Environmental Earth Sciences, 2016, doi:10.1007/s12665- 016-5741-z.
    [6] BALLARINI E, GRAUPNER B, BAUER S. Thermal- hydraulic-mechanical behavior of bentonite and sand- bentonite materials as seal for a nuclear waste repository: numerical simulation of column experiments[J]. Applied Clay Science, 2017, 135: 289-299.
    [7] ZHAO Jing-bo, CHEN Liang, COLLIN F, et al. Numerical modeling of coupled thermal-hydro-mechanical behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2016, 214: 116-126.
    [8] NASSER M S, ONAIZI Sagheer A, HUSSEIN I A, et al. Intercalation of ionic liquids into bentonite: Swelling and rheological behaviors[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 507: 141-151.
    [9] BENDITO E, PINTADO X. Monitoring of swelling pressure in bentonite[J]. Environmental Geotechnics-Journal, 2016, 3(5): 334-345.
    [10] OMAR M, SHANABLEH A, AL ZAYLAIE M. Modification of the swelling characteristics and phosphorus retention of bentonite clay using alum[J]. Soils and Foundations, 2016, 56(5): 861-868.
    [11] MASSAT L, CUISINIER O, BIHANNIC I, et al. Swelling pressure development and inter-aggregate porosity evolution upon hydration of a compacted swelling clay[J]. Applied Clay Science, 2016, 124: 197-210.
    [12] HERBERT H J, KASBOHM J, SPRENGER H, et al. Swelling pressures of MX-80 bentonite in solutions of different ionic strength[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: S327-S342.
    [13] CASTELLANOS E, VILLAR M V, ROMERO E, et al. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: S516-S526.
    [14] MUSSO G, ROMERO Morales E, GENS A, et al. The role of structure in the chemically induced deformations of FEBEX bentonite[J]. Applied Clay Science, 2003, 23(1/4): 229-237.
    [15] DI Maio C. Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Géotechnique, 1996, 46(4): 695-707.
    [16] GAJO A, LORET B. The mechanics of active clays circulated by salts, acids and bases[J]. Journal of the Mechanics & Physics of Solids, 2007, 55(8): 1762-1801.
    [17] YE W M, CUI Y J, QIAN L X, et al. An experimental study of the water transfer through confinedcompacted GMZ bentonite[J]. Engineering Geology, 2009, 108(3/4): 169-176.
    [18] MUSSO G, ROMERO Morales E, GENS A, et al. The role of structure in the chemically induced deformations of FEBEX bentonite[J]. Applied Clay Science, 2003, 23(1/4): 229-237.
    [19] 郭永海, 杨天笑, 刘淑芬. 高放废物处置库甘肃北山预选区水文地质特征研究[J]. 铀矿地质, 2001, 17(3): 184-189. (GUO Yong-hai, YANG Tian-xiao, LIU Shu-fen. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository[J]. Uranium Geolog, 2001, 17(3): 184-189. (in Chinese))
    [20] 于 响, 孙德安, 孙文静. 干湿循环下高庙子钙基膨润土持水和变形特性[J]. 岩土力学, 2015, 36(5): 1339-1346. (YU Xiang, SUN De-an, SUN Wen-jing. Water-retention and deformation characteristics of Gaomiaozi Ca-bentonite during wetting-drying cycles[J]. Rock and Soil Mechanics, 2015, 36(5): 1339-1346. (in Chinese))
    [21] 秦 冰, 陈正汉, 刘月妙, 等. 高庙子膨润土GMZ001三向膨胀力特性研究[J]. 岩土工程学报, 2009, 31(5): 756-763. (QIN Bing, CHEN Zheng-han, LIU Yue-miao, et al. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763. (in Chinese))
    [22] 刘月妙, 王 驹, 曹胜飞, 等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J]. 岩土力学, 2013, 34(10): 2756-2762. (LIU Yue-miao, WANG Ju, CAO Sheng-fei, et al. A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J]. Rock and Soil Mechanics, 2013, 34(10): 2756-2762. (in Chinese))
    [23] 赖小玲, 叶为民, 刘 毅, 等. 高庙子膨润土膨胀力时效性试验研究[J]. 岩土工程学报, 2014, 36(3): 574-579. (LAI Xiao-ling, YE Wei-min, LIU Yi, et al. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. (in Chinese))
    [24] 项国圣, 徐永福, 陈 涛, 等. 盐溶液中膨润土膨胀变形的分形模型[J]. 岩土力学, 2017, 38(1): 75-80. (XIANG Guo-sheng, XU Yong-fu, CHEN Tao, et al. Fractal model for swelling deformation of bentonite in salt solution[J]. Rock and Soil Mechanics, 2017, 38(1): 75-80. (in Chinese))
    [25] 于海浩, 韦昌富, 颜荣涛, 等. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. (YU Hai-hao, WEI Chang-fu, YAN Rong-tao, et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. (in Chinese))
    [26] 孙德安, 张 龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013, 34(10): 2790-2795. (SUN De-an, ZHANG Long. Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10): 2790-2795. (in Chinese))
    [27] 陈永贵, 黄润秋, 朱春明, 等. 化学场对膨润土水-力特性影响研究进展[J]. 同济大学学报(自然科学版), 2014, 42(3): 398-405. (CHEN Yong-gui, HUANG Run-qiu, YE Wei-min, et al. Chemical environment effect on hydro- mechanical behaviour of compacted bentonite[J]. Journal of Tongji University (Natural Science), 2014, 42(3): 398-405. (in Chinese))
    [28] CHEN Y G, ZHU C M, YE W M, et al. Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite[J]. Applied Clay Science, 2016, 124-125: 11-20.
    [29] YE W M, HE Y, CHEN Y G, et al. Thermo-chemical effects on the smectite alteration of GMZ bentonite for deep geological repository[J]. Environmental Earth Sciences, 2016, 75: 905-915.
    [30] CHEN Y G, ZHU C M, YE W M, et al. Swelling pressure and hydraulic conductivity of compacted GMZ01bentonite under salinization-desalinization cycle conditions[J]. Applied Clay Science, 2015, 114: 54-460.
    [31] KAUFHOLD S, DOHRMANN R. Stability of bentonites in salt solutions/sodium chloride[J]. Applied Clay Science, 2009, 45(3): 171-177.
    [32] KAUFHOLD S, DOHRMANN R. Stability of bentonites in salt solutions II: potassium chloride solution-Initial step of illitization[J]. Applied Clay Science, 2010, 49(3) 98-107.
    [33] KAUFHOLD S, DOHRMANN R. Stability of bentonites in salt solutions III: calcium hydroxide[J]. Applied Clay Science, 2011, 51(1/2): 300-307.
    [34] PUSCH R. The buffer and backfill handbook part 1— definitions, basic relationships, and laboratory methods[R]. Stockholm: SKB Technical Report TR 02-20, 2002.
    [35] PUSCH R. The buffer and backfill handbook part 2 — materials and techniques[R]. Stockholm: SKB Technical Report TR 02-12, 2002.
    [36] ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166(10): 74-80.
    [37] LUCKHAM P F, ROSSI S. The colloidal and rheological properties of bentonite suspensions[J]. Advances in Colloid and Interface Science, 1999, 82(1/3): 43-92.
    [38] SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al. In situ observations of the swelling of bentonite aggregates in NaCl solution[J]. Applied Clay Science, 2005, 29(2): 89-98.
    [39] SAVAGE D. The effects of high salinity groundwater on the performance of clay barriers[R]. Stockholm: Engineered Barrier System - Long-term Stability of Buffer and Backfill, Synthesis and Extended, SKI Report Sweden, 2004: 48-59.
    [40] BRADBURY M H, BAEYENS B. Porewater chemistry in compacted re-saturated MX-80 bentonite[J]. Journal of Contaminant Hydrology, 2003, 61(1): 329-338.
    [41] PUSCH R, YONG R N. Microstructure of smectite clays and engineering performance[M]. London and New York: Taylor & Francis US, 2006.
  • 期刊类型引用(5)

    1. 窦杰,向子林,许强,郑鹏麟,王协康,苏爱军,刘军旗,罗万祺. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学. 2023(05): 1657-1674 . 百度学术
    2. 姚未来,刘元雪,陈进,程香. 新工科背景下岩土工程学科研究生培养科研支架式教学模式构建. 高等建筑教育. 2022(02): 66-76 . 百度学术
    3. 董亮,阚新生,邓国如,徐杰,袁慧. 短期电力负荷预测的时间序列数据深度挖掘模型设计. 能源与环保. 2021(06): 207-212 . 百度学术
    4. 刘元雪,姚未来,陈进,郑颖人. 建构“创新”基因, 改革岩土塑性力学研究生教材. 高等工程教育研究. 2021(05): 100-105 . 百度学术
    5. 刘洋,于鹏强,张铎,王肖肖. 一个基于微观力学分析的散粒体应力–剪胀关系. 岩土工程学报. 2021(10): 1816-1824 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  280
  • HTML全文浏览量:  2
  • PDF下载量:  166
  • 被引次数: 7
出版历程
  • 修回日期:  2017-02-08
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回