• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑回填层的护盾式TBM隧道结构设计方法研究

吴圣智, 姜志毅, 王明年, 刘大刚, 董宇苍

吴圣智, 姜志毅, 王明年, 刘大刚, 董宇苍. 考虑回填层的护盾式TBM隧道结构设计方法研究[J]. 岩土工程学报, 2018, 40(5): 857-863. DOI: 10.11779/CJGE201805010
引用本文: 吴圣智, 姜志毅, 王明年, 刘大刚, 董宇苍. 考虑回填层的护盾式TBM隧道结构设计方法研究[J]. 岩土工程学报, 2018, 40(5): 857-863. DOI: 10.11779/CJGE201805010
WU Sheng-zhi, JIANG Zhi-yi, WANG Ming-nian, LIU Da-gang, DONG Yu-cang. Design method for shield TBM tunnels considering backfill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 857-863. DOI: 10.11779/CJGE201805010
Citation: WU Sheng-zhi, JIANG Zhi-yi, WANG Ming-nian, LIU Da-gang, DONG Yu-cang. Design method for shield TBM tunnels considering backfill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 857-863. DOI: 10.11779/CJGE201805010

考虑回填层的护盾式TBM隧道结构设计方法研究  English Version

详细信息
    作者简介:

    吴圣智(1987- ),男,博士研究生,主要从事TBM设计及施工控制技术研究。E-mail:821437063@qq.com。

Design method for shield TBM tunnels considering backfill

  • 摘要: 回填层作为管片与围岩之间的传力层对管片受力有着重要的影响,而现行护盾式TBM隧道设计方法均忽略了回填层的影响,与工程实际存在一定的差异。研究考虑了护盾式TBM隧道中回填层的实际分布,推导了回填层-围岩等效抗力系数计算公式,并以此建立了TBM隧道管片结构设计模型。研究得出:由于回填层的存在,围岩-回填层的等效抗力系数与围岩抗力系数存在一定的差别,围岩抗力系数的改变程度与围岩、回填层力学参数比有关;回填层在管片背后分布呈“上厚下薄”状,使得管片背后围岩-回填层弹性抗力系数分布不同,Ⅱ级围岩回填层-围岩弹性抗力系数呈“上小下大”的鸭蛋状,Ⅲ,Ⅳ级围岩近乎圆状,Ⅴ级围岩呈“上大下小”的倒鸭蛋状;基于回填层-围岩等效抗力系数的结构设计模型计算出的管片受力结果与现场试验值更加接近,验证了回填层-围岩等效抗力系数计算方法和设计模型的准确性。
    Abstract: As the transmission layer between segments and surrounding rock, the backfill layer has important influence on the mechanical characteristics of segments. However, the current design method for shield TBM neglects the influence of the backfill layer, and has differences from the engineering practice. According to the actual distribution of backfill in shield TBM tunnel, the formula for calculating backfill layer and ground reaction coefficient is deduced, and the design model for segment structures is established. It is concluded that due to the existence of the backfill layer, the equivalent resistance coefficient of the surrounding rock and backfill layer is different from that of the surrounding rock. The change degree of the resistance coefficient is related to the mechanical parameters of the surrounding rock and the backfill. Because the backfill behind the segments is thick at upper part and thin at lower part, the distribution of resistance coefficient is different. The distribution of resistance coefficient in rock grade II is small at upper part and large at lower part like a duck egg. The resistance coefficient in rock is grade III and IV, close to be uniform. The resistance coefficient in rock grade V is large at upper part and small at lower part like an inverted duck egg. The calculated results of the segmental force based on the structural design model for backfill are closer to the field test values, and the proposed method for the equivalent resistance coefficient and the design model are verified.
  • [1] 夏定光. 豆砾石回填与灌浆技术探索[J]. 现代隧道技术, 2002, 39(1): 20-23. (XIA Ding-guang. Discussion on gravel backfilling and grouting[J]. Modern Tunneling Technology, 2002, 39(1): 20-23. (in Chinese))
    [2] 苏华友, 汪家林. TBM施工中的质量控制与管理[J]. 岩石力学与工程学报, 2004(11): 1930-1934. (SU Hua-you, WANG Jia-lin. Quality control and management of TBM construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(11): 1930-1934. (in Chinese))
    [3] 郭陕云. 对盾构(TBM)技术运用及开发的几点认识[J]. 隧道建设, 2008, 28(6): 631-637. (GUO Shan-yun. Comments on application and development of TBM/shield tunneling technology[J]. Tunnel Construction, 2008, 28(6): 631-637. (in Chinese))
    [4] 杨 悦, 尹晓黎, 高红梅, 等. 地铁盾构隧道回填层的应力传导性能[J]. 黑龙江科技学院学报, 2013(6): 571-576. (YANG Yue, YIN Xiao-li, GAO Hong-mei, et al. Stress conductivity of backfill in subway TBM construction tunnel[J]. Journal of Heilongjiang Institute of Science & Technology 2013(6): 571-576. (in Chinese))
    [5] 李晶晶. TBM(盾构)施工斜井围岩—支护相互作用机理研究[D]. 北京: 中国矿业大学, 2015. (LI Jing-jing. Research on interaction between surrounding rock and support by TBM techniques[D]. Beijing: China University of Mining and Technology, 2015. (in Chinese))
    [6] WOOD A M M. The circular tunnel in elastic ground[J]. Géotechnique, 1975, 25(1): 115-127.
    [7] ZHANG D, HUANG H, PHNOON K K, et al. A modified solution of radial subgrade modulus for a circular tunnel in elastic ground[J]. Soils and Foundations, 2014, 54(2): 225-232.
    [8] 徐栓强, 俞茂宏. 考虑中间主应力效应的隧洞岩石抗力系数的计算[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4303-4305. (XU Shuan-qiang, YU Mao-hong. Calculation of rock resistant factor in tunnel considering intermediate principal stress effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S1): 4303-4305. (in Chinese))
    [9] 封 坤, 刘四进, 邱 月, 等. 盾构隧道地层抗力系数的修正计算方法研究[J]. 铁道工程学报, 2014(6): 62-67. (FENG Kun, LIU Si-jin, QIU Yue, et al. Research on the modified calculation method for ground resistance coefficient of shield tunnel[J]. Journal of Railway Engineering Society, 2014(6): 62-67. (in Chinese))
    [10] LEE K M, HOU X Y, GE X W, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2001, 25(4): 365-390.
    [11] 王光钦. 弹性力学[M]. 北京: 中国铁道出版社, 2008. (WANG Guan-qin. Mechanics of elasticity[M]. Beijing: China Railway Publishing House, 2008. (in Chinese))
    [12] 晏启祥, 唐茂皓, 何 川, 等. 基于薄壁圆柱壳理论的盾构隧道抗震拟静力分析法[J]. 岩土工程学报, 2014(7): 1371-1376. (YAN Qi-xiang, TANG Mao-hao, HE Chuan, et al. Pseudo-static analysis method for shield tunnels based on theory of thin-walled cylindrical shell[J]. Chinese Journal of Geotechnical Engineering, 2014(7): 1371-1376. (in Chinese))
    [13] 封 坤, 何 川, 夏松林. 大断面盾构隧道结构横向刚度有效率的原型试验研究[J]. 岩土工程学报, 2011(11): 1750-1758. (FENG KUN, HE Chuan, XIA Song-lin. Prototype tests on effective bending rigidity ratios of segmental lining structure for shield tunnel with large cross-section[J]. Chinese Journal of Geotechnical Engineering, 2011(11): 1750-1758. (in Chinese))
    [14] 何 川, 周济民, 封 坤, 等. 基于接头非线性抗弯刚度的盾构隧道迭代算法的实现与应用[J]. 土木工程学报, 2012(3): 166-173. (HE Chuan, ZHOU Ji-min, FENG Kun, et al. An iterative algorithm based on segment joint stiffness nonlinearity and application for shield tunnel structures[J]. China Civil Engineering Journal, 2012(3): 166-173. (in Chinese))
    [15] 郭 瑞. 盾构隧道管片衬砌结构稳定性问题研究[D]. 成都: 西南交通大学, 2014. (GUO Rui. Research on stability of segmental lining structure of shield tunnel[D]. Chengdu: Southwest Jiaotong University, 2104. (in Chinese))
    [16] 彭益成, 丁文其, 朱合华, 等. 盾构隧道衬砌结构的壳-接头模型研究[J]. 岩土工程学报, 2013(10): 1823-1829. (PENG Yi-cheng, DING Wen-qi, YAN Zhi-guo, et al. Analysis and calculation method of effective bending rigidity ratio in modified routine method[J]. Chinese Journal of Geotechnical Engineering, 2013(10): 1823-1829. (in Chinese))
  • 期刊类型引用(6)

    1. 张雄辉,黄孝福,黄诗渊,刘发贵,聂亮冰,黎子玄. 压剪条件下裂缝开闭对准脆性材料断裂行为的影响机制研究. 中国农村水利水电. 2025(03): 128-135 . 百度学术
    2. 梁鹏,李壮,刘俊岭,王聚贤,王骏涛. 三点弯曲试验下花岗岩应变场及损伤演化研究. 地下空间与工程学报. 2023(02): 486-494 . 百度学术
    3. 杨旭旭,吴岳,靖洪文. 基于超声波实测的巷道围岩裂缝扩展和强度演变规律研究. 采矿与安全工程学报. 2021(03): 528-537 . 百度学术
    4. 张超,杨楚卿,白允. 岩石类脆性材料损伤演化分析及其模型方法研究. 岩土力学. 2021(09): 2344-2354 . 百度学术
    5. 何泓易. Hoek-Brown强度准则在隧道围岩卸荷试验中的应用研究. 韶关学院学报. 2021(12): 19-23 . 百度学术
    6. 王思,胡晶,张雪东,任晓丹,陈祖煜,张紫涛. 不同水深水下爆炸数值及离心试验研究. 哈尔滨工业大学学报. 2020(06): 78-84 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  303
  • HTML全文浏览量:  2
  • PDF下载量:  214
  • 被引次数: 8
出版历程
  • 修回日期:  2017-02-28
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回