• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

结构-土-结构相互作用体系地震响应研究综述

王国波, 袁明智, 苗雨

王国波, 袁明智, 苗雨. 结构-土-结构相互作用体系地震响应研究综述[J]. 岩土工程学报, 2018, 40(5): 837-847. DOI: 10.11779/CJGE201805008
引用本文: 王国波, 袁明智, 苗雨. 结构-土-结构相互作用体系地震响应研究综述[J]. 岩土工程学报, 2018, 40(5): 837-847. DOI: 10.11779/CJGE201805008
WANG Guo-bo, YUAN Ming-zhi, MIAO Yu. Review of seismic response of structure-soil-structure interaction system[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 837-847. DOI: 10.11779/CJGE201805008
Citation: WANG Guo-bo, YUAN Ming-zhi, MIAO Yu. Review of seismic response of structure-soil-structure interaction system[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 837-847. DOI: 10.11779/CJGE201805008

结构-土-结构相互作用体系地震响应研究综述  English Version

详细信息
    作者简介:

    王国波(1979- ),男,湖北孝昌人,工学博士,副研究员,主要从事工程结构抗震分析方面的研究。Email: wgb16790604@126.com。

Review of seismic response of structure-soil-structure interaction system

  • 摘要: 依托土体为媒介,相邻地表结构和相邻地下结构在地震作用下彼此相互作用,从而影响相互作用体系的地震响应。现今地下结构的尺寸向大型化发展的同时,与地表结构的距离也越来越近,相互作用效应不容忽视。首先将地表结构-土-地表结构相互作用和地下结构-土-地表结构相互作用统称为结构-土-结构相互作用,拓展了传统结构-土-结构相互作用的内涵,然后分别归纳总结了目前地表结构-土体-地表结构、地下结构-土体-地表结构相互作用体系的研究现状和进展,已有研究表明相互作用效应主要受到相邻结构间距、结构尺寸、土体特性以及地震波特性等因素的影响;而针对材料非线性、土体非线性、地震动的空间效应等因素以及大型三维计算分析的研究相对较少。因而极有必要明确目前已有的研究进展和研究成果,提炼该复杂相互作用体系尚需解决的关键性问题。
    Abstract: The seismic response of the system, which includes the adjacent surface and subsurface structures, will be affected considering the dynamic interaction in the soils. The interaction effect cannot be ignored because the scale of the underground structures turns to be larger and they are closer to the surface structures. The definition of structure-soil-structure interaction is extended, which includes the surface structure-soil-surface structure interaction and the underground structure-soil-surface structure interaction. The existing researches on this topic are summarized and analyzed. It can be concluded that the spacing of the adjacent structures, sizes of the structures, characteristics of the soils and seismic waves are the key factors to influence the interaction effect of the system. However, the studies on the factors such as nonlinearity of material, nonlinearity of soils, and spatial effect of ground motion, and relevant large-scale three-dimensional calculation and analysis are relatively few. Therefore, it is extremely necessary to clarify the existing researches and developments on this topic and to extract the key scientific problems in the complex dynamic interaction system.
  • [1] LOU M, WANG H, CHEN X, et al. Structure-soil-structure interaction: literature review[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12): 1724-1731.
    [2] 高艳华, 宋俊磊, 潘旦光, 等. 相邻建筑物结构-土-结构动力相互作用研究进展[J]. 科技导报, 2015, 33(24): 106-113. (GAO Yan-hua, SONG Jun-lei, PAN Dan-guang, et al. Research status and outlook of structure-soil-structure dynamic interaction in adjacent buildings[J]. Science & Technology, 2015, 33(24): 106-113. (in Chinese))
    [3] RICHARDSON J D. Forced vibrations of rigid bodies on a semi-infinite elastic medium[D]. Nottinghamshire: University of Nottingham, 1969.
    [4] WARBURTON G B, RICHARDSON J D, WEBSTER J J. Forced vibrations of two masses on an elastic half space[J]. Journal of Applied Mechanics, 1971, 38(1): 148-156.
    [5] KOBORI T, KUSAKABE K. Dynamic cross-interaction between two embedded structures[C]// Proceedings of the 5th Japan Earthquake Engineering Symposium. Tokyo, 1978: 521-528.
    [6] KOBORI T, KUSAKABE K. Cross-interaction between two embedded structures in earthquakes[C]// Proceedings of the 7th World Conference on Earthquake Engineering. Istanbul, 1980: 65-72.
    [7] LUCO J E, CONTESSE L. Dynamics structure-soil-structure interraction[J]. Bulletin of the Seismological Society of America, 1973, 63(4): 1289-1303.
    [8] MURAKAMI H, LUCO J E. Seismic response of a periodic array of structures[J]. Journal of Engineering Mechanics, 1977, 103(5): 965-977.
    [9] WONG H L, TRIFUNAC M D. Two-dimensional, antiplane, building-soil-building interaction for two or more buildings and for incident planet SH waves[J]. Bulletin of the Seismological Society of America, 1975, 65(6): 1863-1885.
    [10] YAHYAI M, MIRTAHERI M, MAHOUTIAN M, et al. Soil structure interaction between two adjacent buildings under earthquake load[J]. American Journal of Engineering and Applied Sciences, 2008, 1(2): 121-125.
    [11] 窦立军, 杨柏坡. 高层建筑与相邻多层建筑间的动力相互作用[J]. 地震工程与工程振动, 2000, 20(3): 19-20. (DOU Li-jun, YANG Bai-po. Dynamic interaction of tall building with neighboring muti-storied building[J]. Earthquake Engineering and Engineering, 2000, 20(3): 19-20. (in Chinese))
    [12] KARABALIS D L, HUANG C F D. 3-D foundation-soil- foundation interaction[J]. WIT Transactions on Modelling and Simulation, 1970, 8: 197-209.
    [13] KARABALIS D L, MOHAMMADI M. 3-D dynamic foundation-soil-foundation interaction on layered soil[J]. Soil Dynamics and Earthquake Engineering, 1998, 17(3): 139-152.
    [14] IMAMURA A, WATANABE T, ISHIZAKI M, et al. Seismic response characteristics of embedded structures considering cross interaction[C]// Proceeding of the Tenth World Conference on Earthquake Engineering. Rotterdam, 1992: 1719-1724.
    [15] WANG S, SCHMID G. Dynamic structure-soil-structure interaction by FEM and BEM[J]. Computational Mechanics, 1992, 9(5): 347-357.
    [16] LEHMANN L E, ANTES H. Dynamic structure-soil-structure interaction applying the symmetric galerkin boundary element method (SGBEM)[J]. Mechanics Research Communications, 2001, 28(3): 297-304.
    [17] MULLIKEN J S, KARABALIS D L. Discrete model for foundation-soil-foundation interaction[J]. Soil Dynamics and Earthquake Engineering, 1995, 82(7): 501-508.
    [18] MULLIKEN J S. Discrete models for foundation-soil- foundation interaction in time domain[D]. Carolina: University of South Carolina, 1994.
    [19] MULLIKEN J S, KARABALIS D L. Discrete model for dynamic through-the-soil coupling of 3-D foundations and structures[J]. Earthquake Engineering and Structural Dynamics, 1998, 27(7): 687-710.
    [20] AlDAIKH H, ALEXANDER N A, IBRAIM E. Discrete model for dynamic structure-soil-structure interaction[C]// The 15th World Conference on Earthquake Engineering. Lisbon, 2012.
    [21] ALEXANDER N A, IBRAIM E, ALDAIKH H. A simple discrete model for interaction of adjacent buildings during earthquakes[J]. Computers & Structures, 2012, 124(10): 1-10.
    [22] KITADA Y, HIROTANI T, IGUCHI M. Model test on dynamic structure-structure interaction of nuclear power plant buildings[J]. Nuclear Engineering & Design, 1999, 192(2): 205-216.
    [23] KITADA Y, IGUCHI M. Model test on dynamic cross interaction of adjacent building in nuclear power plants overall evaluation on field test: an outline and outcomes of the project[C]// 13th World Conference on Earthquake Engineering. Vancouver, 2004.
    [24] CLOUTEAU D, BROC D, DEVÉSA G, et al. Calculation methods of structure-soil-structure interaction (3SI) for embedded buildings: application to NUPEC tests[J]. Soil Dynamics & Earthquake Engineering, 2012, 32(1): 129-142.
    [25] CHEN J C, MASIENIKOV O R, JOHNSON J J. Seismic response of a nuclear power generation complex including structure-to-structure interaction effects[R]. Livermore: Lawrence Livermore National Lab, 1997.
    [26] NASERKHAKI S, POURMOHAMMAD H. SSI and SSSI effects in seismic analysis of twin buildings:discrete model concept[J]. Journal of Civil Engineering and Management, 2012, 18(6): 890-898.
    [27] ANDERSON L M, CAREY S, AMIN J. Effect of structure, soil,and ground motion parameters on structure-soil-structure interaction of large scale nuclear structures[C]// Structures Congress 2011. ASCE, Las Vegas, 2011: 2862-2873.
    [28] ROY C, BOLOURCHI S, EGGERS D. Significance of structure-soil-structure interaction for closely spaced structures[J]. Nuclear Engineering and Design, 2015, 295: 680-687.
    [29] SIVANOVIC S. Seismic response of an instrumented reinforced concrete building founded on piles[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, 2000: 1-8.
    [30] 田彼得, 俞载道. 结构-土-结构相互作用体系的动力分析[J]. 同济大学学报, 1987, 15(2): 157-168. (TIAN Bi-de, YU Zai-dao. Dynamic analysis of structure-soil-structure interaction system[J]. Journal of Tongji University, 1987, 15(2): 157-168. (in Chinese))
    [31] 姜忻良, 黄 艳, 丁学成. 相邻建筑物-桩基-土相互作用[J]. 土木工程学报, 1995, 28(5): 36-37. (JIANG Xin-liang, HUANG Yan, DING Xue-cheng. Adjacent building-pile-soil interaction[J]. China Civil Engineering Journal, 1995, 28(5): 36-37. (in Chinese))
    [32] 姜忻良, 严宗达, 李忠献. 多点输入的相邻结构-地基-土地震反应分析[J]. 地震工程与工程振动, 1997(4): 65-71. (JIANG Xin-liang, YAN Zong-da, LI Zhong-xian. Seismic response analysis of adjacent structures-soil-foundation system considering multi-point input[J]. Earthquake Engineering and Engineering Vibration, 1997(4): 65-71. (in Chinese))
    [33] 姜忻良, 严宗达, 李忠献. 考虑地面差动的相邻结构-地基-土相互作用[J]. 地震工程与工程振动, 1997, 17(2): 73-76. (JIANG Xin-liang, YAN Zong-da, LI Zhong-xian. Adjacent structures-foundation-soil interaction considering ground differentials[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2): 73-76. (in Chinese))
    [34] 张菁莉, 陈国兴. 深厚软弱地基上相邻桩箱基础高层建筑地震反应的数值模拟[J]. 世界地震工程, 2003, 19(4): 99-105. (ZHANG Qing-li, CHEN Guo-xing. Numerical simulation of earthquake response for adjacent double high-rise building with pile-box foundation on deep soft sites[J]. World Earthquake Engineering, 2003, 19(4): 99-105. (in Chinese))
    [35] 豆丽萍, 潘旦光. SSSI作用下相邻结构的地震反应分析[J]. 建筑结构, 2013, 43: 412-413. (DOU Li-ping, PAN Dan-guang. Earthquake dynamic interaction of neighboring building in structure-soil-structure interaction[J]. Building Structure, 2013, 43: 412-413. (in Chinese))
    [36] 潘旦光, 豆丽萍. 两相邻建筑“结构-土-结构体系”的动力特性[J]. 土木建筑与环境工程, 2014, 36(3): 95-97. (PAN Dan-guang, DOU Li-ping. Dynamic characteristics of structure-soil-structure system for two neighbor buildings[J]. Journal of Civil,Architectural & Environmental Engineering, 2014, 36(3): 95-97. (in Chinese))
    [37] LI P Z, HOU X Y, LIU Y M, et al. Shaking table model tests on dynamic structure-soil-structure interaction during various excitations[C]// The 15th World Conference on Earthquake Engineering. Lisbon, 2012.
    [38] 潘旦光, 高莉莉, 靳国豪, 等. 结构-土-结构体系动力特性的模型实验[J]. 北京科技大学学报, 2014, 36(12): 1720-1728. (PAN Dan-guang, GAO Li-li, JI Guo-hao, et al. Model test of the dynamic characteristics of a structure- soil-structure system[J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1720-1728. (in Chinese))
    [39] PADRÓN L A, AZNÁREZ J J, MAESO O. Dynamic structure-soil-structure interaction between nearby piled buildings under seismic excitation by BEM-FEM model[J]. Soil Dynamics & Earthquake Engineering, 2009, 29(6): 1084-1096.
    [40] PADRÓN L A, AZNÁREZ J J, MAESO O. 3-D boundary element-finite element method for the dynamic analysis of piled buildings[J]. Engineering Analysis with Boundary Elements, 2011, 35(35): 465-477.
    [41] ÁLAMO G M, PADRÓN L A, AZNÁREZ J J, et al. Structure-soil-structure interaction effects on the dynamic response of piled structures under obliquely incident seismic shear waves[J]. Soil Dynamics & Earthquake Engineering, 2015, 78: 142-153.
    [42] TROMBETTA N, HUTCHINSON T, MASON B, et al. Centrifuge testing of structure-soil-structure interaction: seismic performance of inelastic building models[C]// The 15th World Conference on Earthquake Engineering. Lisbon, 2012.
    [43] ALDAIKH H, ALEXANDER N A, IBRAIM E, et al. Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI)[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 219-232.
    [44] ALDAIKH H, ALEXANDER N A, IBRAIM E, et al. Two-dimensional numerical and experimental models for the study of structure-soil-structure interaction involving three buildings[J]. Computers & Structures, 2015, 150: 79-91.
    [45] 王淮峰, 楼梦麟, 陈 希, 等. 建筑群结构-土-结构相互作用的影响参数研究[J]. 同济大学学报(自然科学版), 2013, 41(4): 510-514. (WANG Huai-feng, LOU Meng-lin, CHEN Xi, et al. Parametric study on structure-soil-structure interaction of high-rise buildings[J]. Journal of Tongji University(Nature Science), 2013, 41(4): 510-514. (in Chinese))
    [46] 陈国兴, 陈 苏, 杜修力, 等. 城市地下结构抗震研究进展[J]. 防灾减灾工程学报, 2016(1): 1-23. (CHEN Guo-xing,CHEN Su,DU Xiu-li,et al. Review of seismic damage,model test,available design and analysis methods of urban underground structure:retrospect and prospect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016(1): 1-23. (in Chinese))
    [47] SEMBLAT J F, KHAM M, BARD P Y. Seismic-wave propagation in alluvial basins and influence of site-city interaction[J]. Bulletin of the Seismological Society of America, 2008, 98(6): 2665-2678.
    [48] GHERGU M, IONESCU I R. Structure-soil-structure coupling in seismic excitation and “city effect”[J]. International Journal of Engineering Science, 2009, 47(3): 342-354.
    [49] PAO Y H, MOW C C. 弹性波的衍射和动应力集中[M]. 刘殿魁, 等译. 北京: 科学出版社, 1993. (PAO Yih-hsing, MOW Chao-chow. Diffraction of elastic waves and dynamic stress concentrations[M]. LIU Dian-kui, et al, trans. Beijing: Science Press, 1993. (in Chinese))
    [50] BARROS F C P D, LUCO J E. Diffraction of obliquely incident waves by a cylindrical cavity embedded in a layered viscoelastic half-space[J]. Soil Dynamics & Earthquake Engineering, 1993, 12(3): 159-171.
    [51] SMERZINI C, AVILÉS J, PAOLUCCI R, et al. Effect of underground cavities on surface earthquake ground motion under SH wave propagation[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(12): 1441-1460.
    [52] ALIELAHI H, KAMALIAN M, ADAMPIRA M. Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 63-79.
    [53] 梁建文, 纪晓东, Vincent W Lee. 地下圆形衬砌隧道对沿线地震动的影响(Ⅰ):级数解[J]. 岩土力学, 2005, 26(4): 520-524. (LIANG Jian-wen, JI Xiao-dong, Vincent W Lee. Effects of an underground lined tunnel on ground motion(I): series solution [J]. Rock and Soil Mechanics, 2005, 26(4): 520-524. (in Chinese))
    [54] 梁建文, 李艳恒, Vincent W Lee. 地下洞室群对地面运动影响问题的级数解答:SH波入射[J]. 岩土力学, 2006, 27(10): 1663-1667. (LIANG Jian-wen, LI Yan-heng, Vincent W Lee. A series solution for surface motion amplification due to underground group cavities: incident SH waves[J]. Rock and Soil Mechanics, 2006, 27(10): 1663-1667. (in Chinese))
    [55] 何 伟, 陈健云, 于品清. 地下结构开发对场地地表反应谱影响研究[J]. 地下空间与工程学报, 2009, 5(6): 1098-1103. (HE Wei,CHEN Jian-yun,YU Pin-qing. A study on influence of underground structure on ground surface response spectra[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(6): 1098-1103. (in Chinese))
    [56] 刘中宪, 琚 鑫, 梁建文. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报, 2015, 37(9): 1599-1612. (LIU Zhong-xian, JU Xin, LIANG Jian-wen. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1599-1612. (in Chinese))
    [57] BAZIAR M H, MOGHADAM M R, KIM D S, et al. Effect of underground tunnel on the ground surface acceleration [J]. Tunnelling & Underground Space Technology, 2014, 44(3): 10-22.
    [58] MOGHADAM M R, BAZIAR M H. Seismic ground motion amplification pattern induced by a subway tunnel: shaking table testing and numerical simulation[J]. Soil Dynamics & Earthquake Engineering, 2016, 83: 81-97.
    [59] 陈国兴, 庄海洋, 杜修力, 等. 土-地铁车站结构动力相互作用大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(2): 171-176. (CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al. Analysis of large-scale shaking table test of dynamic soil-subway station interaction[J]. Earthquake Engineering and Engineering Vibration 2007, 27(2): 171-176. (in Chinese))
    [60] PITILAKIS K, TSINIDIS G, LEANZA A, et al. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects[J]. Soil Dynamics & Earthquake Engineering, 2014, 67: 1-15.
    [61] TZARMADOS D. Dynamic interaction of shallow metro tunnels with aboveground structures at the surface[D]. Greece: Aristotle University of Thessaloniki, 2011.
    [62] 何 伟. 地下结构地震响应及其与地表建筑的影响研究[D]. 大连: 大连理工大学, 2011. (HE Wei. Research on seismic response of underground structures and its interaction with ground building[D]. Dalian: Dalian University of Technology, 2011. (in Chinese))
    [63] 李方杰. 邻近建筑对地铁结构地震反应的影响研究[D]. 北京: 中国地震局地球物理研究所, 2009. (LI Fang-jie. Study on the influence of neighboring buildings on seismic response of subway structures[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2009. (in Chinese))
    [64] 林 皋. 地下结构抗震分析综述(上)[J]. 世界地震工程, 1990, 6(2): 1-11. (LIN Gao. Seismic analysis of underground structures (I)[J]. World Earthquake Engineering, 1990, 6(2): 1-11. (in Chinese))
    [65] YIOUTA M P, KOURETZIS G, BOUCKOVALAS G, et al. Effect of underground structures in earthquake resistant design of surface structures[C]// Geotechnical Special Publication. Denver, 2007.
    [66] AZADI M, HOSSEINI S M, MIR M. The impact of underground tunnel excavation on adjacent buildings during earthquake; case study: shiraz underground, Iran[J]. Electronic Journal of Geotechnical Engineering, 2007, 12(E): 1-10.
    [67] 杨书燕, 姜忻良, 李新国. 隧道对临近建筑物的地震反应影响分析[J]. 四川大学学报 (工程科学版), 2007, 39(3): 41-46. (YANG Shu-yan, JIANG Xin-liang, LI Xin-guo. Analysis on seismic response effect of tunnel to nearby structure[J]. Journal of Sichuan University (Engineering Science Edition), 2007, 39(3): 41-46. (in Chinese))
    [68] 傅玉勇, 闫澍旺, 胡子学. 层状场地中地铁隧道对邻近建筑物地震反应的影响[J]. 建筑结构, 2009, 39(11): 46-49. (FU Yu-yong, YAN Shu-wang, HU Zi-xue. Effect of tunnels on earthquake response of ground and buildings along the subway in layered site[J]. Building Structure, 2009, 39(11): 46-49. (in Chinese))
    [69] WANG H F, LOU M L, CHEN X, et al. Structure- soil-structure interaction between underground structure and ground structure[J]. Soil Dynamics & Earthquake Engineering, 2013, 54(11): 31-38.
    [70] 王国波, 于艳丽, 何 卫. 下穿隧道-土-地表邻近框架结构相互作用体系地震响应初步分析[J]. 岩土工程学报, 2014, 36(2): 334-338. (WANG Guo-bo, YU Yan-li, HE Wei. Seismic response of interaction system of underlying tunnels, soils and adjacent frame structures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 334-338. (in Chinese))
    [71] 王国波, 王亚西, 陈 斌, 等. 隧道-土体-地表结构相互作用体系地震响应影响因素分析[J]. 岩石力学与工程学报, 2015, 34(6): 1276-1287. (WANG Guo-bo, WANG Ya-xi, CHEN Bin, et al. Analysis of factors influencing seismic response of tunnel-soil-ground structural system[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1276-1287. (in Chinese))
    [72] 王国波, 王亚西, 于艳丽, 等. 土体-隧道群相互作用体系地震响应研究[J]. 中国公路学报, 2015, 28(7): 66-76. (WANG Guo-bo, WANG Ya-xi, YU Yan-li, et al. Study on seismic responses of soil-tunnel ground interaction system[J]. China Journal of Highway and Transport, 2015, 28(7): 66-76. (in Chinese))
    [73] GUO J, CHEN J, BOBET A. Influence of a subway station on the inter-story drift ratio of adjacent surface structures[J]. Tunnelling & Underground Space Technology, 2013, 35: 8-19.
    [74] 郭 靖. 地下结构动力变形分析及其对地表建筑地震响应的影响研究[D]. 大连: 大连理工大学, 2013. (GUO Jing. The dynamic deformation analysis of underground structures and its influence on seismic response of adjacent surface buildings[D]. Dalian: Dalian University of Technology, 2013. (in Chinese))
    [75] 徐炳伟. 大型复杂结构-桩-土振动台模型试验研究[D]. 天津: 天津大学, 2009. (XU Bing-wei. Shaking table test studying large-scale soil-pile-complex structure interaction [D]. Tianjin: Tianjin University, 2009. (in Chinese))
  • 期刊类型引用(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 . 百度学术
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 . 百度学术
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 . 百度学术
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 . 百度学术
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 . 百度学术
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 . 百度学术
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 . 百度学术
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 . 百度学术
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 . 百度学术
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 . 百度学术
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 . 百度学术
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 . 百度学术
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 . 百度学术
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 . 百度学术
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 . 百度学术
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 . 百度学术
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 . 百度学术
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 . 百度学术
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 . 百度学术
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 . 百度学术
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 . 百度学术
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 . 百度学术

    其他类型引用(43)

计量
  • 文章访问数:  608
  • HTML全文浏览量:  9
  • PDF下载量:  681
  • 被引次数: 65
出版历程
  • 修回日期:  2017-02-15
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回