• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

珊瑚礁砂砾料力学行为与颗粒破碎的试验研究

王刚, 叶沁果, 查京京

王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. DOI: 10.11779/CJGE201805004
引用本文: 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. DOI: 10.11779/CJGE201805004
WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. DOI: 10.11779/CJGE201805004
Citation: WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. DOI: 10.11779/CJGE201805004

珊瑚礁砂砾料力学行为与颗粒破碎的试验研究  English Version

详细信息
    作者简介:

    王 刚(1978- ),男,博士,教授,主要从事土的本构理论、土动力学及地震工程、数值分析等方面的研究工作。E-mail: cewanggang@163.com。

Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill

  • 摘要: 珊瑚礁砂砾石是中国南海岛礁建设的主要填料,因为特殊的生物成因和多孔隙的颗粒结构,极易产生颗粒破碎。对取自南海某岛礁的珊瑚礁砂砾石填料开展了大型压缩试验、三轴排水剪切试验和三轴不排水剪切试验,研究了压缩指数、杨氏模量、剪胀和强度等基本工程力学指标与颗粒破碎的变化规律。在相同的压缩作用下,疏松试样比密实试样的颗粒破碎程度更大。颗粒破碎程度随着压力的增大而显著增大,导致珊瑚礁砂砾料的压缩模量和杨氏模量随压力的增大增幅不明显,峰值摩擦角和临界状态摩擦角随压力的增高而显著降低。颗粒破碎过程具有明显的应力路径和应力历史依赖性,有无预压作用的相同密度的试样表现出显著不同的压缩特性,相同密度和初始压力的试样在排水和不排水剪切下也表现出明显不同的剪胀和强度特性。峰值摩擦角依赖于应力路径和颗粒破碎的演化过程;临界状态摩擦角与最终的颗粒破碎指标值有较好的相关性,与颗粒破碎的产生过程无关。
    Abstract: The coral sand and gravel are used as the main source of reclamation fill in the island construction of the South China Sea. Due to their biological origin, the grains of coral sand-gravel fill are porous and prone to breakage. A series of large-scale compression tests, triaxial drained and undrained shear tests are conducted on a typical coral sand-gravel fill from the South China Sea, and the basic mechanical properties such as compression index, Yang’s modulus, shear-dilatancy and strength parameters as well as particle crushing characteristics of the coral sand-gravel fill are studied. Under the compression, the particle crushing of a loose sample is more serious than that of a dense sample. Particle crushing increases with the increasing pressure, in result, the compressive modulus and Young's modulus increase little, and the peak friction angle and the critical state friction angle decrease significantly as the pressure increases. The particle crushing has a strong dependency on stress path and history. The samples with the same density but different pre-compression histories exhibit significantly different responses under compression. The samples with the same density and initial pressure also show different dilatant tendency and strength characteristics under drained and undrained triaxial shearing. The peak friction angle depends on the stress path and the evolution process of particle crushing, and the critical state friction angle can be well correlated to a particle breakage index in the final state, implying that it is independent of the intermediate evolution process of particle crushing.
  • [1] JEWELL RJ , ANDREWS DC. Engineering for calcareous sediments[M]. Rotterdam: AA Balkema, 1988.
    [2] 沈建华, 汪 稔. 钙质砂的工程性质研究进展及展望[J]. 工程地质学报, 2010, 18(增刊): 26-32. (SHEN Jian-hua, WANG Ren. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 2010, 18(S0): 26-32. (in Chinese))
    [3] COOP M R. The mechanics of uncemmented carbonate sands[J]. Géotechnique. 1990, 40(4): 607-626.
    [4] COOP M R, SORENSEN K K, BODAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
    [5] 吴京平, 褚 瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 51-57. (WU Jing-ping, CHU Yao, LOU Zhi-gang. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 51-57. (in Chinese))
    [6] 陈海洋, 汪 稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. (CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese))
    [7] 张家铭, 汪 稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327-3331. (ZHANG Jia-ming, WANG Ren, SHI Xiang-feng, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327-3331. (in Chinese))
    [8] 张家铭, 张 凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. (ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese))
    [9] TARANTINO A, HYDE A F L. An experimental investigation of work dissipation in crushable materials[J]. Géotechnique, 2005, 55(8): 575-584.
    [10] VALDES J R, KOPRULU E. Internal stability of crushed sands: experimental study[J]. Géotechnique, 2008, 58(8): 615-622.
    [11] DONOHUE S, O’SULLIVAN C, LONG M. Particle breakage during cyclic triaxial loading of a carbonate sand[J]. Géotechnique, 2009, 59(5): 477-482.
    [12] PESTANA J M, WHITTLE A J. Compression model for cohesionless soils[J]. Géotechnique, 1995, 45(4): 611-631.
    [13] BASTIDAS P A M. Ottawa F-65 sand characterization[D]. Davis: University of California, Davis, 2016.
    [14] 孔德志, 张丙印, 孙 逊. 人工模拟堆石料颗粒破碎应变的三轴试验研究[J]. 岩土工程学报, 2009, 31(3): 464-469. (KONG De-zhi, ZHANG Bing-yin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469. (in Chinese))
    [15] BEEN K, JEFFERIES M G, HACHEY J. The critical state of sands[J]. Géotechnique, 1991, 41(3): 365-381.
    [16] MCDOWELL G R, BOLTON M D, ROBERTSON D. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2102.
    [17] VESIC A S, CLOUGH G W. Behavior of granular materials under high stresses[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1968, 94(SM3): 661-688.
    [18] NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82.
    [19] 贾宇峰, 王丙申, 迟世春. 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37(9): 1692-1697. (JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. (in Chinese))
    [20] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192.
    [21] 郭熙灵, 胡 辉, 包承纲. 堆石料颗粒破碎对剪胀性及抗剪强度的影响[J]. 岩土工程学报, 1997, 19(3): 83-88. (GUO Xi-ling, HU Hui, BAO Cheng-gang. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rock fill[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 83-88. (in Chinese))
    [22] 刘萌成, 高玉峰, 刘汉龙. 模拟堆石料颗粒破碎对强度变形的影响[J]. 岩土工程学报, 2011, 33(11): 1691-1699. (LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1699. (in Chinese))
    [23] SADREKARIMI A, OLSON S M. Critical state friction angle of sands[J]. Géotechnique, 2011, 61(9): 771-783.
  • 期刊类型引用(6)

    1. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    2. 何荣兴,张智源,张星宇,章雅雯. 诱导下岩体裂隙扩展规律研究存在问题及对策. 中国矿业. 2024(10): 168-176 . 百度学术
    3. 刘洋,吴志军,储昭飞,翁磊,徐翔宇,周原,高波,毛春光. 基于FDEM的围压条件下机械冲击破岩机理研究. 中南大学学报(自然科学版). 2023(03): 866-879 . 百度学术
    4. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
    5. 张亚军,莫思阳,张友良. 基于修正牛顿-拉普森迭代的数值流形法. 计算机仿真. 2022(09): 394-397+440 . 百度学术
    6. 韩笑. 基于高阶块体元-有限元建模的混凝土细观数值分析. 粉煤灰综合利用. 2021(03): 56-63 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 修回日期:  2017-03-13
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回