Shearing mechanical model and experimental verification of bolts in jointed rock mass
-
摘要: 依据最小余能原理,在考虑节理岩体中锚杆剪切变形的基础上,分析了节理面水平剪切位移与锚杆轴向及切向变形之间的关系。结合锚杆受力特点拟定了锚杆屈服模式的判定流程。建立了考虑“等效剪切面积”的加锚节理面抗剪强度理论计算模型,并通过室内物理试验验证了理论计算模型的准确性。讨论了锚杆倾角、围岩抗压强度、锚杆直径、法向应力等因素对加锚节理面抗剪强度的影响规律。结果表明:所建立的锚杆剪切力学模型能够较好的反映锚杆轴向力及剪切力对节理面抗剪强度的贡献;考虑“等效剪切面积”的加锚节理面抗剪强度计算结果与试验结果较为吻合;锚杆倾角及围岩抗压强度越大,锚杆轴向力越小,剪切力越大;锚杆直径增大,锚杆轴向力及剪切力都会增大;节理面法向应力会显著影响剪胀效应,法向应力越大,节理面抗剪强度越高。Abstract: Based on the principle of the minimum residual energy, the relationship between the horizontal shear displacement of the joint surface and the axial and tangential deformation of the bolt is analyzed considering the shear deformation of the bolts in jointed rock mass. The judgment process of the yield mode of the bolt is determined by analyzing the characteristics of the loading on the bolts. The formula for calculating the shear strength of the anchoring joint surface is established considering the equivalent shearing area, and the accuracy of the theoretical calculation is verified by the indoor physical experiments. The influence of bolt inclination, surrounding rock strength, bolt diameter and normal stress on the shear strength of the anchoring joint surface is discussed. The results show that the shearing mechanical model can better reflect the contribution of the axial force and shearing force of the bolts to the shear strength of the joints. The calculated results of the shear strength of the anchoring joint surfaces considering the equivalent shearing area are in good agreement with the experimental ones. The greater the inclination of the bolts and the strength of the surrounding rock, the smaller the axial force of the bolts but the greater the shear force. The axial force and shear force of the bolts will increase with the increase of the diameter of the bolts. The normal stress of the joint surface will significantly affect the dilatancy effect, and the greater the normal stress, the higher the shear strength of the joint.
-
Keywords:
- jointed rock /
- bolt anchoring /
- shear strength /
- physical test
-
[1] 葛修润, 刘建武. 加锚节理面抗剪性能研究[J]. 岩土工程学报, 1988, 10(1): 8-19. (GE Xiu-run, LIU Jian-wu. Study of the shear resistance behaviour of bolted rock joints[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(1): 8-19. (in Chinese)) [2] 张乐文, 汪 稔. 岩土锚固理论研究之现状[J].岩土力学, 2002, 23(5): 627-631. (ZHANG Le-wen, WANG Ren. Research on status quo of anchorage theory of rock and soil[J]. Rock and Soil Mechanics, 2002, 23(5): 627-631. (in Chinese) ) [3] 李召峰, 李术才, 张庆松, 等. 富水破碎岩体注浆加固模拟试验及应用研究[J]. 岩土工程学报, 2016, 38(12): 2246-2253. (LI Zhao-feng, LI Shu-cai, ZHANG Qing-song, et al. Model tests on grouting reinforcement of water-rich broken rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2246-2253. (in Chinese)) [4] 刘新荣, 李栋梁, 吴相超, 等. 泥岩隧道锚承载特性现场模型试验研究[J]. 岩土工程学报, 2017, 39(1): 161-169. (LIU Xin-rong, LI Dong-liang, WU Xiang-chao, et al. Field model tests on bearing behavior of mudstone tunnel anchorage[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 161-169. (in Chinese)) [5] 张强勇, 李术才, 陈卫忠. 裂隙岩体加索支护模型及其工程应用[J]. 岩土力学, 2004, 25(9): 1465-1468. (ZHANG Qiang-yong, LI Shu-cai, CHEN Wei-zhong. Reinforcing model for anchor cable in jointed rockmass and its application to engineering[J].Rock and Soil Mechanics, 2004, 25(9): 1465-1468. (in Chinese)) [6] SPANG K, EGGER P. Action of fully-grouted bolt in jointed rock and factors of influence[J]. Rock Mechanics and Rock Engineering, 1990, 23(3): 201-229. [7] FERRERO A M. The shear strength of reinforced rock joints[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1995, 32(6): 595-605. [8] CHEN Yu. Experimental study and stress analysis of rock anchorage performance[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 428-437. [9] YOSHINAKA R, SKAGUCHI S, SHIMIZU T, et al. Experimental study on the rock bolt reinforcement in discontinuous rocks[J]. Electionics & Communications in Japan, 1987, 133(113): 117-127. [10] 张治强, 张 国. 边坡预应力锚固结构的实验研究[J].东北大学学报, 1999, 20(5): 536-539. (ZHANG Zhi-qiang, ZHANG Guo. Experimental study on prestressly anchoring structure of slope[J]. Journal of Northeastern University (Natural Science), 1999, 20(5): 536-539. (in Chinese)) [11] 杨松林, 徐卫亚, 朱焕春. 锚杆在节理中的加固作用[J].岩土力学, 2002, 23(5): 604-607. (YANG Song-lin, XU Wei-ya, ZHU Huan-chun. Reinforcement of bolt in joints[J]. Rock and Soil Mechanics, 2002, 23(5): 604-607. (in Chinese) ) [12] 杨松林, 徐卫亚, 黄启平. 节理剪切过程中锚杆的变形分析[J]. 岩石力学与工程学报, 2004, 23(19): 3268-3273. (YANG Song-lin, XU Wei-ya, HAUNG Qi-ping. Analysis on the bolt deformation as result of joint shear displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3268-3273. (in Chinese) ) [13] 陈文强, 贾志欣, 赵宇飞, 等. 剪切过程中锚杆的轴向和横向作用分析[J]. 岩土力学, 2015, 36(1): 143-148. (CHEN Wen-qiang, JIA Zhi-xin, ZHAO Yu-fei, et al. Analysis of axial and transverse effects of rock bolt during shearing process[J]. Rock and Soil Mechanics, 2015, 36(1): 143-148. (in Chinese)) [14] 张 伟, 刘泉声. 节理岩体锚杆的综合变形分析[J].岩土力学, 2012, 33(4): 112-119. (ZHANG Wei, LIU Quan-sheng. Synthetical deformation analysis of anchor bolt in jointed rock mass[J]. Rock and Soil Mechanics, 2012, 33(4): 112-119. (in Chinese)) [15] HETENYI M. Beam on elastic foundation: Theory with applications in the fields of civil and mechanical engineering[M]. Ann Arbor: The University of Michigan Press, 2013. [16] PELLET F, EGGER P. Analytical model for the mechanical behavior of bolted rock joints subjected to shearing[J]. Rock Mechanics and Rock Engineering, 1996, 29(2): 73-97. [17] HOLMBERG M. The mechanical behavior of untensioned grouted rock bolts[D]. Stockholm: Royal Institute of Technology, 1991. [18] LI L, HAGAN P C, SAYDAM S, et al. Shear resistance contribution of support system in double shear test[J]. Tunnelling and Underground Space Technology, 2016, 56: 168-175. -
期刊类型引用(20)
1. 王天保,朱训国,夏洪春,张传庆,郭利军. 恒刚度边界下加锚节理岩体剪切行为宏细观研究. 三峡大学学报(自然科学版). 2025(01): 57-64 . 百度学术
2. 刘广建,裘伟奇,杜程,罗战友,杨彪,王旭虹,王志成,周浩,陈曦. 考虑锚杆强度的加锚岩体结构面锚固效应试验研究. 岩土工程学报. 2025(03): 580-588 . 本站查看
3. 刘广建,王志成,罗战友,杜时贵,王康宇,裘伟奇,周浩,陈曦. 加锚岩体结构面抗剪强度尺寸效应试验及机理研究. 采矿与岩层控制工程学报. 2024(04): 91-101 . 百度学术
4. 李天国,唐彬,程桦,刘小虎,侯俊领,李宏亮,王晓云. 锚固条件下煤系地层裂隙岩体蠕变力学特性研究. 岩土力学. 2024(10): 3003-3012 . 百度学术
5. 宋洋,王贺平,张维东,赵立财,周健华,毛镜涵. 恒定法向刚度条件下加锚充填节理岩体剪切特性研究. 岩土力学. 2024(09): 2695-2706+2718 . 百度学术
6. 朱金焕. 基于细观模型的节理参数对岩石力学性能的影响. 水利科学与寒区工程. 2023(03): 50-52 . 百度学术
7. 白锦文,杨欣宇,史旭东,冯国瑞,崔博强,宋诚,王凯,李剑. FRP包裹对煤充结构体劈裂破坏特征的影响. 岩石力学与工程学报. 2023(S1): 3541-3557 . 百度学术
8. 宋洋,范波,王贺平. 考虑法向应力与岩石强度的加锚节理岩体剪切力学模型研究. 岩石力学与工程学报. 2023(06): 1325-1335 . 百度学术
9. 李青海,柳昌涛,史卫平,石利伟,杨涛. 基于不同锚固角度的倾斜节理岩体剪切破坏特征研究. 采矿与岩层控制工程学报. 2023(04): 5-16 . 百度学术
10. 左海峰,蒋宇静,李春平,刘光饶,张孙豪,管彦太,栾恒杰,刘建荣,李鑫鹏. 基于Pile单元改进模型的锚杆锚固角度效应数值模拟研究. 山东科技大学学报(自然科学版). 2023(05): 30-39 . 百度学术
11. 查文华,梁译文,王澄菡,王京九,许涛,程文博,林杭. 剪切作用下新型拉力分散型麻花锚杆承载性能研究. 水利水电技术(中英文). 2023(11): 40-52 . 百度学术
12. 司林坡. 拉伸与剪切载荷作用下锚杆力学性能试验研究. 采矿与岩层控制工程学报. 2022(03): 1-10 . 百度学术
13. 李国锋,王九红,刘建荣,陈建刚,赵慧,栾恒杰,董庆宝,张孙豪. 巷道围岩锚固结构面剪切特性与破坏特征研究. 山东科技大学学报(自然科学版). 2022(04): 47-55 . 百度学术
14. 栾恒杰,曹艳伟,蒋宇静,管彦太,李春平,张孙豪,刘建荣. 锚杆拉剪耦合失效模式在FLAC3D中的实现与应用. 采矿与岩层控制工程学报. 2022(06): 5-15 . 百度学术
15. 王广辉,王襄禹,杨建雄,朱祥祥. 预应力锚固体控制节理围岩变形的机理分析. 中国矿业大学学报. 2021(01): 60-68 . 百度学术
16. 蒋宇静,张孙豪,栾恒杰,王长盛,文志杰,王冬,韩伟. 恒定法向刚度边界条件下锚固节理岩体剪切特性试验研究. 岩石力学与工程学报. 2021(04): 663-675 . 百度学术
17. 黎海滨,谭捍华,袁维,黄启舒,韩振中,王华,彭澍. 剪切方向与锚杆倾向垂直条件下锚杆的锚固机制研究. 应用力学学报. 2021(05): 1995-2003 . 百度学术
18. 徐竟航,张志奇,彭亮. 3D打印技术在节理岩体试样制备中的应用与研究. 铁道勘察. 2019(03): 70-74 . 百度学术
19. 张振松,张贤达,王刚,马明,赵程. 充填节理宏细观锚固破坏机理分析. 中国科技论文. 2019(06): 604-609 . 百度学术
20. 靖洪文,苏海健,史新帅,赵振龙,孟波. 基于井下钻孔剪切的煤矿巷道围岩强度演化规律研究. 岩石力学与工程学报. 2019(12): 2428-2437 . 百度学术
其他类型引用(31)
计量
- 文章访问数: 433
- HTML全文浏览量: 13
- PDF下载量: 331
- 被引次数: 51