• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑主应力轴方向的砂土各向异性强度准则与滑动面研究

董彤, 郑颖人, 孔亮, 柘美

董彤, 郑颖人, 孔亮, 柘美. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
引用本文: 董彤, 郑颖人, 孔亮, 柘美. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
Citation: DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018

考虑主应力轴方向的砂土各向异性强度准则与滑动面研究  English Version

基金项目: 国家自然科学基金项目(11572165)
详细信息
    作者简介:

    董彤(1990- ),男,山东新泰人,博士研究生,主要从事岩土本构关系方面的研究。E-mail: dt0706@126.com。

  • 中图分类号: TU431

Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress

  • 摘要: 主应力加载方向对土体强度产生影响的根本原因是土体存在各向异性。对于横观各向同性砂土而言,沿不同平面的抗剪强度随该平面与沉积面夹角增大而增大。认为砂土固有各向异性强度与该平面的各向异性参数密切相关,给出了各向异性砂的峰值强度表达式。在SMP准则中,各个潜在滑动面上的剪正应力比相同,各向异性砂土的抗剪强度和滑动面位置由强度最低的潜在滑动面所决定。综合考虑主应力轴、滑动面以及沉积面之间的位置关系,得到了砂土的各向异性强度准则。采用福建标准砂进行了一系列定轴剪切试验,系统地观测了定轴剪切试验中试样滑动面的特征。已有试验数据和理论结果的对比表明,各向异性强度准则可以较好地预测各向异性砂土的强度与滑动面位置。
    Abstract: The effect of directions of the principal stress on the deformation and strength of sand is due to the anisotropy of soils. The shear strength on a certain plane of the cross-isotropic sand is larger when the angle between this plane and the bedding plane is larger. Assuming that the intrinsic anisotropy strength of sand is closely related to the anisotropy parameter of the plane, the peak strength of anisotropic soils is presented. As the shear-normal stress ratio of each potential slipping plane of the SMP criterion is the same, the shear strength and position of the slipping plane are determined by the potential slipping plane with the lowest shear strength. On this basis, an anisotropic strength criterion is proposed by considering the relationship among the principal stress axis, the slipping plane and the bedding plane. A series of shear tests with fixed direction of the major principal stress are carried out using Fujian standard sand in order to systematically observe the slipping plane of the specimens. Comparison between the predicted data and the measured results indicates that the anisotropic model can well reflect the strength and the position of the slipping plane of the anisotropic soils.
  • [1] 董彤, 郑颖人, 刘元雪, 等. 考虑主应力轴旋转的土体本构关系研究进展[J]. 应用数学和力学, 2013, 34(4): 327-335.
    (DONG Tong, ZHENG Ying-ren, LIU Yuan-xue, et al.Research progress of the soil constitutive relation considering principal stress axes rotation[J]. Applied Mathematics and Mechanics, 2013, 34(4): 327-335. (in Chinese))
    [2] ARTHUR J R F, MENZIES B K. Inherent anisotropy in sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [3] TONG Z, FU P, ZHOU S, et al.Experimental investigation of shear strength of sands with inherent fabric anisotropy[J]. Acta Geotechnica, 2014, 9(2): 257-275.
    [4] 蔡燕燕, 俞缙, 余海岁, 等. 加载路径对粗粒土非共轴性影响的试验研究[J]. 岩土工程学报, 2012, 34(6): 1117-1122.
    (CAI Yan-yan, YU Jin, YU Hai-sui, et al.Experimental study on effect of loading path on non-coaxiality of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1117-1122. (in Chinese))
    [5] CAI Y, YU H S, WANATOWSKI D, et al.Non-coaxial behaviour of sand under various stress paths[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(8): 1381-1395.
    [6] 黄茂松. 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, 38(1): 1-34.
    (HUANG Mao-song.Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 1-34. (in Chinese))
    [7] 沈扬, 周建, 张金良, 等. 考虑主应力方向变化的原状黏土强度及超静孔压特性研究[J]. 岩土工程学报, 2007, 29(6): 843-847.
    (SHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al.Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843-847. (in Chinese))
    [8] LADE P V, DYCK E V, RODRIGUEZ N M.Shear banding in torsion shear tests on cross-anisotropic deposits of fine Nevada sand[J]. Soils and Foundations, 2014, 54(6): 1081-1093.
    [9] 童朝霞. 应力主轴循环旋转条件下砂土的变形规律与本构模型研究[D]. 北京: 清华大学, 2008.
    (TONG Zhao-xia.Research on deformation behavior and constitutive model of sands under cyclic rotation of principal stress axes[D]. Beijing: Tsinghua University, 2008. (in Chinese))
    [10] MIURA K, MIURA S, TOKI S.Deformation behavior of anisotropic dense sand under principal stress rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [11] MATSUOKA H, JUN-ICHI H, KIYOSHI H.Deformation and failure of anisotropic sand deposits[J]. Soil Mechanics and Foundation Engineering, 1974, 32(11): 31-36. (in Japanese))
    [12] 张连卫, 张建民, 张嘎. 基于SMP的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008, 30(8): 1107-1111.
    (ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga.SMP- based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    [13] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 42(1): 43-50.
    (YAO Yang-ping, KONG Yu-xia.Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 42(1): 43-50. (in Chinese))
    [14] 罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127-131.
    (LUO Ting, LI Meng, KONG Yu-xia, et al.Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127-131. (in Chinese))
    [15] MATSUOKA H.Stress-strain relationships of sands based on the mobilized plane[J]. Soils & Foundations, 1974, 14: 47-61.
    [16] LI X S, DAFALIAS Y F.Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [17] GAO Z, ZHAO J, YAO Y.A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids & Structures, 2010, 47(22/23): 3166-3185.
    [18] 曹威, 王睿, 张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报, 2016, 38(11): 2026-2032.
    (CAO Wei, WANg Rui, ZHANG Jian-min.New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. (in Chinese)).
    [19] DONG T, ZHE M.Controlling and realizing of generalized stress paths in HCA test[J]. Electronic Journal of Geotechnical Engineering, 2016(21): 5269-5283
  • 期刊类型引用(25)

    1. 王朋飞,祝壮,孙中光,曲越,张衡,李培现. 长壁工作面开采时间间隔对倾向主断面地表沉陷的影响研究. 采矿与安全工程学报. 2025(02): 282-293 . 百度学术
    2. 丁星丞,李培现,康新亮,王明亮,张涛,郝登程. 融合概率积分法与SBAS-InSAR的开采沉陷计算方法. 矿业科学学报. 2025(01): 48-56 . 百度学术
    3. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 . 百度学术
    4. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 . 百度学术
    5. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 . 百度学术
    6. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 . 百度学术
    7. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 . 百度学术
    8. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 . 百度学术
    9. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 . 百度学术
    10. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 . 百度学术
    11. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 . 百度学术
    12. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 . 百度学术
    13. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 . 百度学术
    14. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 . 百度学术
    15. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 . 百度学术
    16. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 . 百度学术
    17. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 . 百度学术
    18. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 . 百度学术
    19. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 . 百度学术
    20. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 . 百度学术
    21. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 . 百度学术
    22. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 . 百度学术
    23. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 . 百度学术
    24. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 . 百度学术
    25. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  310
  • HTML全文浏览量:  2
  • PDF下载量:  259
  • 被引次数: 41
出版历程
  • 收稿日期:  2016-12-23
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回