• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

酸性溶液对黄土结构改良的试验研究

张耀, 胡再强, 陈昊, 李冰, 宋朝阳

张耀, 胡再强, 陈昊, 李冰, 宋朝阳. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报, 2018, 40(4): 681-688. DOI: 10.11779/CJGE201804012
引用本文: 张耀, 胡再强, 陈昊, 李冰, 宋朝阳. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报, 2018, 40(4): 681-688. DOI: 10.11779/CJGE201804012
ZHANG Yao, HU Zai-qiang, CHEN Hao, LI Bing, SONG Zhao-yang. Experimental study on evolution of loess structure using acid solutions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 681-688. DOI: 10.11779/CJGE201804012
Citation: ZHANG Yao, HU Zai-qiang, CHEN Hao, LI Bing, SONG Zhao-yang. Experimental study on evolution of loess structure using acid solutions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 681-688. DOI: 10.11779/CJGE201804012

酸性溶液对黄土结构改良的试验研究  English Version

基金项目: 陕西省科技统筹创新工程重点实验室项目(2014SZS15-Z02)
详细信息
    作者简介:

    张耀(1983- ),男,博士研究生,主要从事黄土力学与工程方面的研究。E-mail: 75330458@qq.com。

    通讯作者:

    胡再强,E-mail:huzq@xaut.edu.cn

  • 中图分类号: TU444

Experimental study on evolution of loess structure using acid solutions

  • 摘要: 提出了黄土结构改良的概念,即将黄土的天然属性——湿陷性和震陷性看作不良属性,对这种不良属性的消除实质上是对黄土固有属性的优化。在此基础上,采用化学方法改良了黄土的结构,即利用酸能溶解碳酸钙的特性,迅速有效的破坏黄土内部的不良孔隙结构,并通过电镜扫描的观察,分析了在不同压力下,不同浓度的乙酸溶液对湿陷性黄土的结构改良情况。试验结果表明:低压下,由于乙酸的作用,黄土的结构得到了显著改善;高压下,由于压力已经破坏了黄土的孔隙结构,乙酸的作用效果并不明显。又通过饱和压缩试验和固结快剪试验验证了乙酸溶液对黄土结构的改良效果:在同等压力条件下,经过乙酸溶液处理过的黄土发生二次湿陷或多次湿陷的可能性和危害性都较小,并且具有较高的抗剪强度。最后,指出了这一研究成果在现实应用中的可能:在预浸水法中添加适量的乙酸可以显著改善处理效果;能够为被酸性废水污染的黄土上的岩土工程建设及相关研究提供有价值的参考。
    Abstract: The concept of loess structure improvement is put forward in this study. It refers to the concept that the collapsibility and seismic subsidence are poor engineering properties for loess, and their elimination is essentially the optimization or evolution of the loess intrinsic quality. On this basis, a chemical method to improve the loess structure is proposed, i.e., using acid to dissolve calcium carbonate to destroy the pore structure quickly and effectively. The structure evolution of collapsible loess under different pressures in different concentrations of acetic acid solution is observed and analyzed by the scanning electron microscope (SEM). The tests results indicate that the structure of loess is improved due to the acetic acid under low pressures, while the effect of acetic acid is not obvious under high pressures because of the previous complete elimination of the pore structure. In addition, the saturated compression tests and consolidated quick shear tests are carried out to verify the effect of the evolution of loess structure treated with acetic acid. The results indicate that the loess treated with acetic acid has a smaller possibility and perniciousness of secondary or multiple collapse and a higher shear strength under the same pressures. Finally, two practical applications of this research are put forward. One is that, if adding some acetic acid, the construction effect of pre-soaking method can be notably improved. The other one is that the research results can provide valuable reference for the geotechnical engineering construction on the loess polluted by acidic waste water and other related special studies.
  • [1] GAO G R.The distribution and geotechnical properties of loess soils, lateritic soils and clayey soils in China[J]. Engineering Geology, 1996, 42(1): 95-104.
    [2] NOUAOURIA M S, GUENFOUD M, LAFIFI B.Engineering properties of loess in Aleeria[J]. Engineering Geology, 2008, 99(1): 85-90.
    [3] YUAN Z X, WANG L M.Collapsibility and seismic settlement of loess[J]. Engineering Geology, 2010, 105(S1/2): 119-123.
    [4] TOVEY N K.Quantitative analysis of electron micrographs of soil microstructure[Z]. Proceeding of the International Symposium on Soil Structure, 1973.
    [5] SEED H B, CHEN C K.Structure and strength characteristics of compacted clays[J]. J SMFD, ASCE, 1960, 85: 87-128.
    [6] MICHELL J K.Fundamentals of soil behavior[M]. 2nd ed. New York: Wiley, 1993.
    [7] 林崇义. 黄土的结构特性[C]// 中国科学院哈尔滨土建研究所黄土基本性质研究论文集. 北京: 科学出版社, 1962: 42-44.
    (LIN Chong-yi.Structural characteristics of loess[C]// Research Papers on Basic Properties of Loess in Harbin Institute of Civil Engineering of the Chinese Academy of Sciences. Beijing: Science Press, 1962: 42-44. (in Chinese))
    [8] 陈守义. 某些黏土岩的各向异性在亚微观结构上的表现[J]. 水文地质工程地质, 1980, 5: 17-19.
    (CHEN Shou-yi.The anisotropy of some clay rocks in submicrostructure[J]. Hydrogeology and Engineering Geology, 1980, 5: 17-19. (in Chinese))
    [9] 高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990, 12(4): 1-10.
    (GAO Guo-rui.Structural theory of collapsible deformation of Loess[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 1-10. (in Chinese))
    [10] 高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学, 1980, 23(12): 81-86, 115-118.
    (GAO Guo-rui. Microstructure classification and wet subsidence of loess[J]. Science China, 1980, 23(12): 81-86, 115-118. (in Chinese))
    [11] 谢定义, 姚仰平, 党发宁. 高等土力学[M]. 北京: 高等教育出版社, 2008.
    (XIE Ding-yi, YAO Yang-ping, DANG Fa-ning.Advanced soil mechanics[M]. Beijing: Higher Education Press, 2008. (in Chinese))
    [12] 高国瑞. 论中国区域性土的分布和岩土性质的形成[J]. 岩土工程学报, 2005, 27(5): 511-515.
    (GAO Guo-rui.Distribution of regional soils in China and formation of their special geotechnical properties[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 511-515. (in Chinese))
    [13] 胡再强, 沈珠江, 谢定义. 结构性黄土的变形特性[J]. 岩石力学与工程学报, 2004, 23(24): 4142-4146.
    (HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi.Deformation properties of structural loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4142-4146. (in Chinese))
    [14] 胡再强, 沈珠江, 谢定义. 非饱和黄土的结构性研究[J]. 岩石力学与工程学报, 2000, 19(6): 775-779.
    (HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi.The structure of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 775-779. (in Chinese))
    [15] VILAR1 O M, RODRIGUES R A. Collapse behavior of soil in a Brazilian region affected by a rising water table[J]. Canadian Geotechnical Journal, 2011, 48(2): 226-233.
    [16] 沈珠江, 胡再强. 黄土的二元介质模型[J]. 水利学报, 2003, 34(7): 1-6.
    (SHEN Zhu-jiang, HU Zai-qiang.Two element medium model of Loess[J]. Journal of Hydraulic Engineering, 2003, 34(7): 1-6. (in Chinese))
    [17] SIVAKUMAR V, WHEELER S J.Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay, Part 1: Wetting and isotropic compression[J]. Géotechnique, 2000, 50(4): 359-368.
    [18] CASINI F.Deformation induced by wetting: a simple model[J]. Canadian Geotechnical Journal, 2012(49): 954-960.
    [19] MIHALACHE C, BUSCARNERA G.Is wetting collapse an unstable compaction process[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014098.
    [20] HAERI S M, GARAKANI A A, KHOSRAVI A, et al.Assessing the hydro-mechanical behavior of collapsible soils using a modified triaxial test device[J]. Geotechnical Testing Journal, 2014, 37(2): 565-570.
    [21] 孙建中, 刘建民. 黄土的未饱和湿陷、剩余湿陷和多次湿陷[J]. 岩土工程学报, 2000, 22(3): 365-367.
    (SUN Jian-zhong, LIU Jian-min.On unsaturated collapse, remnant collapse and multiple collapse of loess[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 365-367. (in Chinese))
    [22] 张爱军, 邢义川, 胡新丽, 等. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 2016, 38(增刊2): 117-122.
    (ZHANG Ai-jun, XING Yi-chuan, HU Xin-li, et al.Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 117-122. (in Chinese))
    [23] 邵生俊, 李骏, 邵将, 等. 大厚度湿陷性黄土地层的现场砂井浸水试验研究[J]. 岩土工程学报, 2016, 38(9): 1549-1558.
    (SHAO Sheng-jun, LI Jun, SHAO Jiang, et al.In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. (in Chinese))
    [24] 黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.
    (HUANG Wen-xi.Engineering properties of soil[M]. Beijing: Water Resources and Electric Power Press, 1983. (in Chinese))
    [25] WHEELER S J, SIVAKUMAR V.Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay, Part 2: Shearing and constitutive modeling[J]. Géotechnique, 2000, 50(4): 369-376.
    [26] 陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1992.
    (CHEN Zhong-yi, ZHOU Jing-xing, WANG Hong-jin.Soil mechanics[M]. Beijing: Tsinghua University Press, 1992. (in Chinese))
  • 期刊类型引用(5)

    1. 窦杰,向子林,许强,郑鹏麟,王协康,苏爱军,刘军旗,罗万祺. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学. 2023(05): 1657-1674 . 百度学术
    2. 姚未来,刘元雪,陈进,程香. 新工科背景下岩土工程学科研究生培养科研支架式教学模式构建. 高等建筑教育. 2022(02): 66-76 . 百度学术
    3. 董亮,阚新生,邓国如,徐杰,袁慧. 短期电力负荷预测的时间序列数据深度挖掘模型设计. 能源与环保. 2021(06): 207-212 . 百度学术
    4. 刘元雪,姚未来,陈进,郑颖人. 建构“创新”基因, 改革岩土塑性力学研究生教材. 高等工程教育研究. 2021(05): 100-105 . 百度学术
    5. 刘洋,于鹏强,张铎,王肖肖. 一个基于微观力学分析的散粒体应力–剪胀关系. 岩土工程学报. 2021(10): 1816-1824 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-12-18
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回