• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

飞灰固化工程材料在碳化条件下的强度及环境特性研究

唐强, 潘玲玲, 高玉峰, 陈甦, 尹立新

唐强, 潘玲玲, 高玉峰, 陈甦, 尹立新. 飞灰固化工程材料在碳化条件下的强度及环境特性研究[J]. 岩土工程学报, 2018, 40(4): 645-654. DOI: 10.11779/CJGE201804008
引用本文: 唐强, 潘玲玲, 高玉峰, 陈甦, 尹立新. 飞灰固化工程材料在碳化条件下的强度及环境特性研究[J]. 岩土工程学报, 2018, 40(4): 645-654. DOI: 10.11779/CJGE201804008
TANG Qiang, PAN Ling-ling, GAO Yu-feng, CHEN Su, YIN Li-xin. Strength and environmental behaviors of solidified fly ash under carbonation effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 645-654. DOI: 10.11779/CJGE201804008
Citation: TANG Qiang, PAN Ling-ling, GAO Yu-feng, CHEN Su, YIN Li-xin. Strength and environmental behaviors of solidified fly ash under carbonation effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 645-654. DOI: 10.11779/CJGE201804008

飞灰固化工程材料在碳化条件下的强度及环境特性研究  English Version

基金项目: 国家自然科学基金项目(51708377); 中国博士后科学基金面上项目(2016M591756); 江苏省自然科学基金青年项目(BK20170339); 江苏省高等学校自然科学研究面上项目(17KJB560008); 江苏省建设系统科技项目(2016ZD18); 江苏省博士后科研资助计划项目(1601175C); 苏州市建设系统科研项目
详细信息
    作者简介:

    唐强(1985- ),男,副教授,主要从事环境岩土工程等方面的教学和科研工作。E-mail:tangqiang@suda.edu.cn。

    通讯作者:

    陈甦,E-mail:xiaowozi@hotmail.com

  • 中图分类号: TU432

Strength and environmental behaviors of solidified fly ash under carbonation effect

  • 摘要: 螯合剂常用于固定重金属污染物,水泥可有效提升材料的强度,而碳化效应对水泥基材料工作性能有着显著影响。因此,采用水泥和螯合剂对固体废弃物焚烧飞灰进行协同处理制备固化飞灰复合工程材料,并探究碳化效应对其强度及环境友好性的影响。结果表明,常规养护28 d的飞灰复合材料强度达到3~6 MPa,高达规范中水泥土强度标准的7.5倍,且其强度随着龄期及水泥掺量的增加而增大,而碳化效应可有效的提升材料的强度特性;经处理后的飞灰复合材料中重金属Cd、Pb、Ni和Cr的浸出分别仅为原灰的2.0%,1.0%,19.2%和14.1%,碳化试样浸出略高,但仍满足固废浸出标准;碳化深度随养护龄期的增加而增大,与水泥掺量呈反比。优良的工作性能和环境友好性使材料在建设工程领域展示出极大的资源化利用潜力和价值。
    Abstract: The cemented solidification/stabilization has been widely adopted for fly ash around the world, since it can effectively enhance strength and restrict heavy metals. However, the carbonation effect has a significant impact on the performance of cement-based materials. Thus, the carbonation on strength characteristics and heavy metal toxicity of samples solidified with cement and chelating agent is evaluated. The test results show that the strength of samples after 28 d of standard curing has reached 3~6 MPa, which is 7.5 times more than that of cement soil. Besides, the carbonated specimens with chelating agent of 6% show the highest strength is more than those with 3% and 9%. Considering the leachability of heavy metals, the leaching concentration of Cd, Pb, Ni and Cr of cement-chelated solidified fly ash is only 2.0%, 1.0%, 19.2% and 14.1% of raw fly ash, respectively. Compared with the samples cured under standard condition, the carbonated specimens show higher leachability. Both of them reach the leaching standards and are environment-friendly. Furthermore, the carbonation depth increases with the curing time and is inversely proportional to the cement content.
  • [1] 建设部人事教育司等. 城市生活垃圾卫生填埋处理技术[M]. 北京: 中国建筑工业出版社, 2005.
    (Ministry of Housing and Urban-Rural Development of the People’s Republic of China. The sanitary landfill technology for municipal solid waste[M]. Beijing: China Architecture & Building Press, 2005. (in Chinese))
    [2] European Commission.Eurosat Statistical books, Europe in figures, Eurosat yearbook 2012[M]. Belgium, 2015.
    [3] 中华人民共和国国家统计局. 中国统计年鉴(2002-2015)[DB]. 2015[Dec. 4th]. . 中国统计年鉴(2002-2015)[DB]. 2015[Dec. 4th]. http://www.stats.gov.cn/ tjsj/ndsj.
    (National Bureau of Statistics of the People’s Republic of China. China Statitical Yearbook, 2002- 2015[DB]. 2015[Dec. 4th]. . China Statitical Yearbook, 2002- 2015[DB]. 2015[Dec. 4th]. http://www.stats.gov.cn/tjsj/ndsj. (in Chinese))
    [4] GALIANO Y L, PEREIRA C F, VALE J.Stabilization/ solidification of a municipal solid waste incineration residue using fly ash-based geopolymers[J]. J Hazard Mater, 2011, 185: 373-381.
    [5] BENEDIKT N, PHILIPP A, FRANZ W.Heavy metal removal from sewage sludge ash and municipal solid waste fly ash: a comparison[J]. Fuel Processing Technology, 2013, 105: 195-201.
    [6] BRUGGEN V D B, VOGELS G, VAN H P, et al. Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals[J]. Journal of Hazardous Materials, 1998, 57(S1/S2/S3): 127-144.
    [7] 刘汉桥, 张书庭, 张于峰, 等. 医疗垃圾焚烧飞灰的水泥固化效果试验[J]. 天津大学学报, 2010, 43(1): 32-36.
    (LIU Han-qiao, ZHANG Shu-ting, ZHANG Yu-feng, et al.Experiment on solidification of hospital waste incineration fly ash using cement[J]. Journal of Tianjin University, 2010, 43(1): 32-36. (in Chinese))
    [8] TANG Q, LIU Y, GU F, et al.Solidification/stabilization of fly ash from a municipal solid waste incineration facility using Portland cement[J]. Advances in Materials Science and Engineering, 2016: 1-10.
    [9] 徐善华, 孔德亮, 李安邦, 等. 完全碳化混凝土单轴受压力学性能试验[J]. 西安建筑科技大学学报, 2015, 47(2): 187-191.
    (XU Shan-hua, KONG De-liang, LI An-bang, et al.Study on mechanical property of carbonized concrete under monotonic loading[J]. Journal of Xi'an University of Architecture & Technology, 2015, 47(2): 187-191. (in Chinese))
    [10] TANG Q, ZHANG Y, GAO Y F, et al.Use of cement-chelated solidified mswi fly ash for pavement material: mechanical and environmental evaluations[J]. Canadian Geotechnical Journal, 2017, 54: 1553-1566.
    [11] QIAN G, ZHANG H, ZHANG X, et al.Modification of MSW fly ash by anionic chelating surfactant[J]. Journal of Hazardous Materials, 2005, 121(1): 251-258.
    [12] SUA-IAM G, MAKUL N.Rheological and mechanical properties of cement-fly ash self-consolidating concrete incorporating high volumes of alumina-based material as fine aggregate[J]. Construction & Building Materials, 2015, 95: 736-747.
    [13] TIAN Z, ZHANG B, HE C, et al.The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration[J]. Process Safety & Environmental Protection, 2015, 98: 333-341.
    [14] ZHOU M, GE X, WANG H, et al.Effect of the CaO content and decomposition of calcium-containing minerals on properties and microstructure of ceramic foams from fly ash[J]. Ceramics International, 2017, 43(12): 9451-9457.
    [15] LI B, DENG Z, WANG W, et al.Degradation characteristics of dioxin in the fly ash by washing and ball-milling treatment[J]. Journal of Hazardous Materials, 2017, 339: 191-199.
    [16] 汤怡新, 刘汉龙, 朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554.
    (TANG Yi-xin, LIU Han-long, ZHU Wei.Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554. (in Chinese))
    [17] TANG Q, TANG X W, HU M M, et al.Removal of Cd(II) from aqueous solution with activated firmiana simplex leaf: behaviors and affecting factors[J]. Journal of Hazardous Materials, 2010, 179: 95-103.
    [18] TANG Q, TANG X W, LI Z Z, et al.Adsorption and desorption behaviour of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies[J]. Journal of Chemical Technology and Biotechnology, 2009, 84: 1371-1380.
    [19] TANG Q, KATSUMI T, INUI T, et al.Influence of pH on the membrane behavior of bentonite amended Fukakusa clay[J]. Separation and Purification Technology, 2015, 141: 132-142.
    [20] TANG Q, KATSUMI T, INUI T, et al.Membrane behavior of bentonite amended compacted clay[J]. Soils and Foundations, 2014, 54(3): 329-344.
    [21] DU Y J, WEI M L, JIN F, et al.Stress-strain relation and strength characteristics of cement treated zinc-contaminated clay[J]. Engineering Geology, 2013, 167(12): 20-26.
    [22] 李江山, 薛强, 胡竹云, 等. 垃圾焚烧飞灰水泥固化体强度稳定性研究[J]. 岩土力学, 2013, 34(3): 751-756.
    (LI Jiang-shan, XUE Qiang, HU Zhu-yun, et al.Study of strength stability of municipal solid waste incinerator fly ash solidified by cement[J]. Rock and Soil Mechanics, 2013, 34(3): 751-756. (in Chinese))
    [23] 查甫生, 刘晶晶, 崔可锐, 等. 水泥固化稳定重金属污染土的工程性质试验研究[J]. 工业建筑, 2012, 42(11): 74-77.
    (ZHA Fu-sheng, LIU Jing-jing, CUI Ke-rui, et al.Engineering properites of solidified and stabilized heavy mental contaminated soils with cement[J]. Industrial Construction, 2012, 42(11): 74-77. (in Chinese))
    [24] 杜延军, 蒋宁俊, 王乐, 等. 水泥固化锌污染高岭土强度及微观特性研究[J]. 岩土工程学报, 2012, 34(11): 2114-2120.
    (DU Yan-jun, JIANG Ning-jun, WANG Le, et al.Strength and microstructure characteristics of cement-based solidified/stabilized zinc-contaminated kaolin[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2114-2120. (in Chinese))
    [25] PU L, UNLUER C.Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes[J]. Construction & Building Materials, 2016, 120: 349-363.
    [26] 何娟, 杨长辉. 碳化对碱-矿渣水泥浆体微观结构的影响[J]. 建筑材料学报. 2012, 15(1): 126-130.
    (HE Juan, YANG Chang-hui.Influence of carbonation on microstructure of alkali-activated slag cement pastes[J]. Journal of Building Materials, 2012, 15(1): 126-130. (in Chinese))
    [27] 何娟, 杨长辉. 硅酸盐水泥混凝土的碳化分析[J]. 硅酸盐通报, 2009, 28(6): 1225-1229.
    (HE Juan, YANG Chang-hui.Analysis of carbonation on portland cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(6): 1225-1229. (in Chinese))
    [28] HOVER K C.The influence of water on the performance of concrete[J]. Constr Build Mater, 2011, 25(7): 3003-3013.
    [29] MO L, PANESAR D K.Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cem Concr Res, 2012, 42(6): 769-777.
    [30] TANG Q, KIM H J, ENDO K, et al.Size effect on lysimeter test evaluating the properties of construction and demolition waste leachate[J]. Soils and Foundations (JGS) 2015, 55(4): 720-736.
    [31] 贺杏华, 侯浩波, 张大捷. 水泥对垃圾焚烧飞灰的固化处理试验研究[J]. 环境污染与防治, 2006, 28(6): 425-428.
    (HE Xing-hua, HOU Hao-bo, ZHANG Da-jie.Study on cement solidification of municipal solid waste incineration fly ash[J]. Environmental Pollution and Control, 2006, 28(6): 425-428. (in Chinese))
    [32] PEREIRA C F, RODRIGUEZ-PINERO M, VALE J.Solidification/ stabilization of electricarcfurnace dust using coal fly ash analysis of the stabilization process[J]. Journal of Hazardous Materials, 2001, B82: 183-195.
    [33] BHATTACHARJEE A, MANDAL H, ROY M, et al.Microstructural and magnetic characterization of fly ash from Kolaghat Thermal Power Plant in West Bengal, India[J]. Journal of Magnetism & Magnetic Materials, 2011, 323(23): 3007-3012.
    [34] NAMARAK C, SATCHING P, TANGCHIRAPAT W, et al.Improving the compressive strength of mortar from a binder of fly ash-calcium carbide residue[J]. Construction & Building Materials, 2017, 147: 713-719.
    [35] 谭笑, 孙杨雨, 冉真真, 等. 垃圾焚烧飞灰中重金属的稳定化研究[J]. 北京化工大学学报(自然科学版), 2016, 43(3): 7-13.
    (TAN Xiao, SUN Yang-yu, RAN Zhen-zhen, et al.Stabilization of heavy metals in the fly ash from solid waste incineration[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2016, 43(3): 7-13. (in Chinese))
    [36] 章定文, 曹智国, 张涛, 等. 碳化对水泥固化铅污染土的电阻率特性影响规律[J]. 岩石力学与工程学报, 2014, 33(12): 2563-2572.
    (ZHANG Ding-wen, CAO Zhi-guo, ZHANG Tao, et al.Effect of carbonation on electrical resistivity of cement solidified lead-contaminated soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2563-2572. (in Chinese))
    [37] 张旭健, 王廖沙, 王文丰, 等. 一种新型重金属螯合剂处理垃圾焚烧飞灰进入生活垃圾填埋场的可行性研究[J]. 环境卫生工程, 2014(4): 30-32.
    (ZHANG Xu-jian, WANG Liao-sha, WANG Wen-feng, et al.Feasibility of waste incineration fly ash treated by a new kind of heavy metal chelator to enter domestic waste landfill sites[J]. Environmental Sanitation Engineering, 2014(4): 30-32. (in Chinese))
    [38] 耿欧, 张鑫, 张铖铠. 再生混凝土碳化深度预测模型[J]. 中国矿业大学学报, 2015, 44(1): 54-58.
    (GENG Ou, ZHANG Xin, ZHANG Cheng-kai.Prediction models of the carbonization depth of recycled concrete[J]. Journal of China University of Mining & Technology, 2015, 44(1): 54-58. (in Chinese))
  • 期刊类型引用(2)

    1. 谢军,李延涛,宗金辉,黄久鹏. 斜交隧道—土体相互作用体系振动台试验设计. 科学技术与工程. 2022(17): 7165-7173 . 百度学术
    2. 李平,刘应慈,周楷,朱胜,李玉影. 振动台模型试验相似设计综述. 防灾科技学院学报. 2020(04): 29-35 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  342
  • HTML全文浏览量:  5
  • PDF下载量:  454
  • 被引次数: 14
出版历程
  • 收稿日期:  2017-02-05
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回