• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软土地区钻孔灌注桩抗震性能试验研究

刘畅, 刘彦坡, 郑刚, 刘永超

刘畅, 刘彦坡, 郑刚, 刘永超. 软土地区钻孔灌注桩抗震性能试验研究[J]. 岩土工程学报, 2018, 40(2): 360-369. DOI: 10.11779/CJGE201802018
引用本文: 刘畅, 刘彦坡, 郑刚, 刘永超. 软土地区钻孔灌注桩抗震性能试验研究[J]. 岩土工程学报, 2018, 40(2): 360-369. DOI: 10.11779/CJGE201802018
LIU Chang, LIU Yan-po, ZHENG Gang, LIU Yong-chao. Experimental study on seismic behavior of bored cast-in-situ pile in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 360-369. DOI: 10.11779/CJGE201802018
Citation: LIU Chang, LIU Yan-po, ZHENG Gang, LIU Yong-chao. Experimental study on seismic behavior of bored cast-in-situ pile in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 360-369. DOI: 10.11779/CJGE201802018

软土地区钻孔灌注桩抗震性能试验研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目
详细信息
    作者简介:

    刘畅(1974-),女,博士,副教授,主要从事基坑工程、桩土相互作用、软土地基的研究。E-mail:lclc74@163.com。

  • 中图分类号: TU473

Experimental study on seismic behavior of bored cast-in-situ pile in soft soil area

  • 摘要: 选取天津市典型软土场地,针对4根纵筋配筋率不同的钢筋混凝土钻孔灌注桩展开现场足尺桩拟静力试验。探究了不同配筋率的钻孔灌注桩在低周往复水平荷载作用下的滞回特性、耗能性能、刚度退化、位移延性及承载能力的差异。试验结果表明:4根灌注桩的等效黏滞阻尼系数集中在0.10~0.23,且位移延性系数均在4.5以上,具有较好的耗能及延性性能;增大配筋率并不能明显改善钢筋混凝土钻孔灌注桩的刚度退化过程,减缓刚度退化的速率;配筋率的增加可有效提高灌注桩的塑性变形能力,增大灌注桩的极限位移,同时显著增大灌注桩的屈服荷载与极限荷载;灌注桩的耗能能力及位移延性随配筋率的增加均呈先增大后减小的变化规律,从抗震性能的角度分析,灌注桩最优配筋率的建议值为0.63%。
    Abstract: The field pseudo-static tests on 4 full-scale reinforced concrete cast-in-situ bored piles with different reinforcement ratios are performed at a typical soft soil site of Tianjin. The seismic behavior indice, such as hysteretic behavior, energy dissipation, stiffness degradation, displacement ductility and bearing capacity of the test piles with different ratios of reinforcement under horizontal low cyclic loading, are studied. The results show that the equivalent viscous damping coefficients of four piles mainly appear between 0.10 to 0.23, and the displacement ductility coefficients of four piles are all above 4.5, indicating good energy dissipation and ductility. Increasing reinforcement ratio does not significantly improve the stiffness degradation process of the cast-in-situ bored piles and does not slow down the rate of stiffness degradation. Increasing the reinforcement ratio can effectively improve the plastic deformation capacity of the piles, and increase their ultimate displacement, and significantly increase the yield load and ultimate load of a single pile. Both the energy dissipation capacity and the displacement ductility of the piles increase firstly and then decrease with the increase of the reinforcement ratio, and based on the seismic performance of cast-in-situ piles, the recommended value of the optimal reinforcement ratio of cast-in-situ bored piles is 0.63%.
  • [1] MUGURUMA H, WATANABE F, NISHIYAMA M.Improving the flexural ductility of pretensioned higth strength spun concrete piles by lateral confining of concrete[C]// Proceedings of the Pacific Conference on Earthquake Engineering. Wairakei, 1987: 385-396 .
    [2] TULADHAR R, MUTSUYOSHI H, MAKI T, et al.Lateral loading tests of full scaled concrete piles embedded into the ground[J]. Journal of the Faculty of Engineering, Saitama Institute of Technology, 2005, 38: 74-80.
    [3] 刘俊伟, 张忠苗, 于秀霞, 等. 预应力混凝土管桩抗弯及抗剪性能试验研究[J]. 建筑技术, 2010, 41(12): 1101-1104.
    (LIU Jun-wei, ZHANG Zhong-miao, YU Xiu-xia, et al.Experimental study on flexural and shearing propertieof prestressed concrete pipe pile[J]. Architecture Technology, 2010, 41(12): 1101-1104. (in Chinese))
    [4] 张忠苗, 刘俊伟, 邹健, 等. 加强型预应力混凝土管桩抗弯剪性能试验研究[J], 浙江大学学报(工学版), 2011, 45(6): 1074-1080.
    (ZHANG Zhong-miao, LIU Jun-wei, ZOU Jian, et al.Experimental study on flexural and shearing property of reinforced prestressed concrete pipe pile[J]. Journal of Zhejiang University (Engineering Science), 2010, 41(12): 1101-1104. (in Chinese))
    [5] 王铁成, 杨志坚, 赵海龙, 等. 改善预应力高强混凝土管桩抗震性能试验研究及数值分析[C]// 第十六届全国混凝土及预应力混凝土学术会议暨第十二届预应力学术交流会论文集. 北京, 2013,45-53.
    (WANG Tie-cheng, YANG Zhi-jian, et al.Experimental study and numerical analysis on seismic behavior of prestressed high strength concrete pipe pile[C]// Proceedings of the 16th National Conference on the Study of Concrete and Prestressed Concrete and the 12th Session of the Academic Conference. Beijing, 2013: 45-53. (in Chinese))
    [6] 杨建平, 朴春德, 常鸿飞, 等. 水平荷载下灌注桩变形分布式检测及承载机制研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2983-2988.
    (YANG Jian-ping, PIAO Chun-de, CHANG Hong-fei1, et al. Distributed detection of deformat- ion and bearing mechanism on bored pile under horizontal load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2983-2988. (in Chinese))
    [7] 孙元奎, 陈永, 陈华顺. 淤土地基灌注桩水平承载特性试验及数值计算[J]. 公路, 2012(1): 78-82.
    (SUN Yuan-kui, CHENG Yong, CHEN Hua-shun.Experiment and numerical analysis of lateral load-carrying behaviour of grouting piles in silty soil foundation[J]. Highway, 2012(1): 78-82. (in Chinese))
    [8] 张建伟, 温森, 孙兴亚, 等. PCC桩与灌注桩的水平承载性能对比分析[J]. 河南大学学报(自然科学版), 2010, 40(5): 533-536.
    (ZHANG Jian-wei, WEN Sen, SUN Xing-ya, et al.Comparison analysis of the lateral bearing capacity of bored pile and PCC[J]. Journal of Henan University (Natural Science), 2010, 40(5): 533-536. (in Chinese))
    [9] 北京市桩基研究小组. 钻孔灌注桩水平承载力的试验研究[J]. 建筑结构, 1977(4): 1-12.
    (Beijing Pile Foundation Research Group. Experimental study on bearing capacity of bored cast-in-situ pile[J]. Building Structure, 1977(4): 1-12. (in Chinese))
    [10] 万征, 秋仁东. 桩侧桩端后注浆灌注桩水平静载特性研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3588-3596.
    (WAN Zheng, QIU Ren-dong.Horizontal static load test research for pile lateral friction and tip resistance of grouting technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3588-3596. (in Chinese))
    [11] 黄银冰, 赵恒博, 顾长存, 等. 考虑水泥土桩增强作用的灌注桩水平承载性能现场试验研究[J]. 岩土力学, 2013, 34(4): 1109-1115.
    (HUANG Yin-bing, ZHAO Heng-bo, GU Chang-cun, et al.Field experimental study of lateral load capacity of filling pile enhanced by soil-cement pile[J]. Rock and Soil Mechanics, 2013, 34(4): 1109-1115. (in Chinese))
    [12] 郭院成, 张景伟, 周同和. 竖向与水平复合荷载作用下后注浆灌注桩承载性能试验研究[J]. 世界地震工程, 2013, 29(4): 38-45.
    (GUO Yuan-cheng, ZHANG Jing-wei, ZHOU Tong-he.Experimental study on bearing capacity of post-grouting bored piles under vertical and lateral composed load[J]. World Earthquake Engineering, 2013, 29(4): 38-45. (in Chinese))
    [13] 蔡忠祥, 刘陕南, 高承勇, 等. 基于混凝土损伤模型的灌注桩水平承载性状分析[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4032-4040.
    (CAI Zhong-xiang, LIU Shan-nan, GAO Cheng-yong, et al.Analysis of lateral response of bored piles based on concrete damaged plasticity model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33((S2): 4032-4040. (in Chinese))
    [14] 李从昀. 混凝土灌注桩水平承载性能研究[D]. 北京: 中国地质大学(北京), 2006.
    (LI Cong-yun. Research on the lateral bearing properties of auger cast-in-place piles[D]. Beijing: China University of Geosciences (Beijing), 2006. (in Chinese))
    [15] 黄世友. 桩基抗震性能讨论[J]. 城市建设理论研究(电子版), 2014, 19(4).(HUANG Shi-you. Pile foundation seismic performance discussion[J]. Urban Construction Theory Research, 2014, 19(4). (in Chinese))
    [16] 梁传波. 高烈度区桥梁PHC管桩与RC灌注桩性能对比分析[J]. 科技展望, 2015, 25(22): 17-20.
    (LIANG Chuan-bo.Comparison and analysis of performance of PHC Pipe Pile and RC cast-in-situ pile of bridge in high intensity area[J]. Science and Technology, 2015, 25(22): 17-20. (in Chinese))
    [17] 张菊辉, 姜大威. 钢护筒混凝土灌注桩的基础抗震性能研究进展[J]. 水资源与水工程学报, 2014, 25(5): 142-146.
    (ZHANG Ju-hui, JIANG Da-wei.Progress in basic anti-seismic property of steel tube concrete drilled pile[J]. Journal of Water Resources&Water Engineering, 2014, 25(5): 142-146. (in Chinese))
    [18] 刘立平. 水平地震作用下桩-土-上部结构弹塑性动力相互作用分析[D]. 重庆: 重庆大学, 2004.
    (LIU Li-ping.Study on pile-soil-superstructure elasto-plastic dynamic interaction under the horizontal earthquake action[D]. Chongqing: Chongqing University, 2004. (in Chinese))
    [19] 吴薪柳. 桩-土-复杂结构振动台试验与数值模拟及桩-土相关参数研究[D]. 天津: 天津大学, 2012.
    (WU Xin-liu.Pile-soil-complex structure shaking table test and numerical simulation and study on related parameters of pile-soil[D]. Tianjin: Tianjin University, 2012. (in Chinese))
    [20] 蔡忠祥, 刘陕南, 黄绍铭, 等. 预应力桩水平承载性状数值分析[J]. 岩土工程学报, 2013, 35(增刊1): 439-442.
    (CAI Zhong-xiang, LIU Shan-nan, HUANG Shao-ming, et al.Numerical analysis of lateral response of prestressed piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 439-442. (in Chinese))
    [21] 陈思奇, 梁发云, 陈海兵, 等. 地震作用下预应力混凝土管桩运动响应三维数值分析[J]. 地震工程学报, 2015, 37(1): 55-60.
    (CHEN Si-qi, LIANG Fa-yun, CHEN Hai-bing, et al.Characteristics of bending moment distribution in prestressed concrete high pilings during earthquakes[J]. China Earthquake Engineering Journal, 2015, 37(1): 55-60. (in Chinese))
    [22] 王新玲, 高会宗, 等. 新型混合配筋预应力混凝土管桩抗弯性能试验研究[J]. 工业建筑, 2012, 42(8): 64-68.
    (WANG Xin-ling, GAO Hui-zong, et al.Experimental studies of flexural behavior of new type prestressed concrete pipe pile with compound unprestressed reinforcement[J]. Industrial Construction, 2012, 42(8): 64-68. (in Chinese))
    [23] 王树峰, 张日红. 复合配筋预应力混凝土桩桩身性能的研究[J]. 混凝土与水泥制品, 2013, 8: 36-39.
    (WANG Shu-feng, ZHANG Ri-hong.Study on the behavior of pretensioning prestressed composite reinforced concrete pile[J]. China Concrete and Cement Products, 2013, 8: 36-39. (in Chinese))
    [24] 10SG813 钢筋混凝土灌注桩[S]. 2010. (10SG813 Reinforced concrete cast in place-pile[S]. 2010. (in Chinese))
    [25] JGJ94–2008建筑桩基技术规范[S]. 2008.
    (JGJ94–2008 Technical code for foundation[S]. 2008. (in Chinese))
    [26] JGJ/T 101–2015建筑抗震试验规程[S]GJ/T 101–2015建筑抗震试验规程[S]. 北京: 中国建筑工业出版社, 2015.
    (JGJ/T 101–2015 Code for seismic test of buildings[S]GJ/T 101–2015 Code for seismic test of buildings[S]. Beijing: China Architecture & Building, 2015. (in Chinese))
    [27] 倪国泉, 杨军, 潘鹏, 等. 预应力混凝土空心方桩承台节点抗震性能试验研究[J]. 地震工程学报, 2013, 35(2): 246-251.
    (NI Guo-quan, YANG Jun, PAN Peng, et al.Quasi-static tests of pile-cap connections for the prestressed spun concrete square piles[J]. China Earthquake Engineering Journal, 2013, 35(2): 246-251. (in Chinese))
    [28] 李忠献. 工程结构试验理论与技术[M]. 天津: 天津大学出版社, 2004: 229-231.
    (LI Zhong-xian.Theory and technique of engineering structure experiments[M]. Tianjin: Tianjin University, 2004: 229-231. (in Chinese))
    [29] BUDEK-SCHMEISSER A.Rational seismic design of precast prestre -ssed concret piles[J]. PCI Journal, 2008, 53(5) : 40-53.
  • 期刊类型引用(6)

    1. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    2. 何荣兴,张智源,张星宇,章雅雯. 诱导下岩体裂隙扩展规律研究存在问题及对策. 中国矿业. 2024(10): 168-176 . 百度学术
    3. 刘洋,吴志军,储昭飞,翁磊,徐翔宇,周原,高波,毛春光. 基于FDEM的围压条件下机械冲击破岩机理研究. 中南大学学报(自然科学版). 2023(03): 866-879 . 百度学术
    4. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
    5. 张亚军,莫思阳,张友良. 基于修正牛顿-拉普森迭代的数值流形法. 计算机仿真. 2022(09): 394-397+440 . 百度学术
    6. 韩笑. 基于高阶块体元-有限元建模的混凝土细观数值分析. 粉煤灰综合利用. 2021(03): 56-63 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 收稿日期:  2016-11-08
  • 发布日期:  2018-02-24

目录

    /

    返回文章
    返回