• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土地层土压盾构隧道施工掌子面稳定性研究

王俊, 何川, 王闯, 陈子全, 唐锐

王俊, 何川, 王闯, 陈子全, 唐锐. 砂土地层土压盾构隧道施工掌子面稳定性研究[J]. 岩土工程学报, 2018, 40(1): 177-185. DOI: 10.11779/CJGE201801019
引用本文: 王俊, 何川, 王闯, 陈子全, 唐锐. 砂土地层土压盾构隧道施工掌子面稳定性研究[J]. 岩土工程学报, 2018, 40(1): 177-185. DOI: 10.11779/CJGE201801019
WANG Jun, HE Chuan, WANG Chuang, CHEN Zi-quan, TANG Rui. Face stability analysis of EPB shield tunnel in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 177-185. DOI: 10.11779/CJGE201801019
Citation: WANG Jun, HE Chuan, WANG Chuang, CHEN Zi-quan, TANG Rui. Face stability analysis of EPB shield tunnel in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 177-185. DOI: 10.11779/CJGE201801019

砂土地层土压盾构隧道施工掌子面稳定性研究  English Version

基金项目: 中国工程院重点咨询项目(2015-XZ-28-02); 国家重点研发计划项目(2016YFC0802201); 2014年度西南交通大学博士研究生创新基金项目
详细信息
    作者简介:

    王俊(1987-),男,博士,主要从事隧道技术方面的研究工作。E-mail:luckywangjun@126.com。

    通讯作者:

    何川,E-mail:chuanhe21@163.com

  • 中图分类号: TU43

Face stability analysis of EPB shield tunnel in sand

  • 摘要: 土压平衡盾构在自稳性较差的砂土地层施工时若仓内支护压力过小可能诱发掌子面失稳,应引起高度重视。采用三维离散元方法分析了砂土地层土压盾构掘进与停机状态下的掌子面稳定性。研究建立了较为精细的土压盾构机模型并引入盾构动态施工过程,充分考虑了刀盘旋转切削土体与面板支撑对掌子面的影响,探讨了刀盘型式、隧道埋深以及刀盘转速等因素对掌子面极限支护压力与失稳区分布的影响规律,并从细观角度解释了砂土地层土压盾构隧道掌子面失稳机理。与既有研究相比,本文考虑了土压盾构动态施工对掌子面稳定性的影响,更加接近工程实际,研究成果可为确保砂土地层土压盾构隧道施工掌子面稳定提供参考。
    Abstract: When an earth pressure balanced (EPB) shield tunnel is constructed in sand which is weakly self-stabilized, face failure may occur if the support pressure in the chamber is not strong enough, and much attention should be paid to it. The three-dimensional discrete element method (3D DEM) is employed to analyze the face stability when the shield is being advancing or stopped. Precise EPB shield machine models are established and the dynamic construction process is incorporated. Thus, the influence of soil-cutting tool interaction and support of panel for face soil can be considered. The impact of cutterhead types, buried depth and rotating speed of cutterhead on the limit support and pattern of failure zone can be clarified, and the failure mechanism of EPB shield tunnel in sand can be explained microscopically. Compared with the existing researches, the dynamic construction process is considered to study the face stability in this study, which is close to tunnel construction in practice. The study results may serve as certain guidance for guaranteeing the face stability of EPB shield tunnel in sand.
  • [1] HORN N.Horizontal earth pressure on the vertical surfaces of the tunnel tubes[C]// National Conference of the Hungarian Civil Engineering Industry. Budapest, 1961: 7-16.
    [2] BOREREW. Tunnel face stability and new CPT application[D]. Delft: Relft University, 2001.
    [3] ANAGNOSTOU G, KOVÁRI K. Face stability condition with earth pressure balanced shields[J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165-173.
    [4] KLAR A, OSMAN A S, BOLTON M.2D and 3D upper bound solutions for tunnel excavation using ‘elastic’ flow fields[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(12):1367-1374
    [5] MOLLON G, DIAS D, SOUBRA A H.Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 215-229.
    [6] ATKINSON J H, POTTS D M.Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [7] MOLLON G, DIAS D, SOUBRA A H.Rotational failure mechanism for the face stability analysis of tunnels driven by a pressurized shield[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12):1367-1374
    [8] ATKINSON J H, POTTS D M.Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [9] DAVIS E H, GUNN M J, MAIR F R, et al.The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique e, 1980, 30(4): 397-416.
    [10] ATKINSON J H, POTTS D M.Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [11] CHAMBON P, CORTÉ J F.Sallow tunnels in cohesionless soil: stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1164.
    [12] KIRSCH A.Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1): 43-62.
    [13] 陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122.
    (CHEN Ren-peng, LI Jun, CHEN Yun-min, et al.Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese))
    [14] IDINGER G, AKLIK P, WU W, et al.Centrifuge model test on the face stability of shallow tunnel[J]. Acta Geotechnica, 2011, 6(2): 43-62.
    [15] 朱伟, 秦建设, 卢廷浩. 砂土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土工程学报, 2005, 27(8): 897-902.
    (ZHU Wei, QING Jian-she, LU Ting-hao.Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902. (in Chinese))
    [16] 高健, 张义同, 乔金丽. 渗透力对隧道开挖面稳定性影响分析[J]. 岩土工程学报, 2009, 31(10): 1547-1553.
    (GAO Jian, ZHANG Yi-tong, QIAO Jin-li.Face stability analysis of tunnels with consideration of seepage force[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1547-1553. (in Chinese))
    [17] MELIS M M J, MEDINA R L E. Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1234-1242.
    [18] KARIM A S M M. Three-dimensional discrete element modeling of tunneling in sand[D]. Alberta: University of Alberta, 2007.
    [19] CHEN R P, TANG L J, LING D S, et al.Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J]. Computers and Geotechnics, 2011, 38(2):187-195.
    [20] Itasca Consulting Group inc. Particle Flow Code in 3 dimensions, version 4.0[M]. Minnesota: Itasca Consulting Group inc, 2008.
    [21] 张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004.
    (ZHANG Feng-xiang, ZHU He-hua, FU De-ming.Shield tunnel[J]. Beijing: China Communications Press, 2004. (in Chinese) )
    [22] 王洪新. 土压平衡盾构刀盘开口率选型及其对地层适应性研究[J]. 土木工程学报, 2010, 43(3): 88-92.
    (WANG Hong-xin.Type selection of the head aperture ratio of EPB shield cutterheads and adaptability to stratum characteristics[J]. China Civil Engineering Journal, 2010, 43(3): 88-92. (in Chinese))
    [23] 郭建涛. 粉土粉砂地层盾构掘进参数优化预测研究[D]. 北京: 北京交通大学, 2009.
    (GUO Jian-tao.The study of shield tunneling parameters optimization and prediction on layer of silt and silty sand[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese))
    [24] MAIR. Centrifual modelling of tunnel construction in soft clay[D]. Cambridge: Cambridge University, 1979.
    [25] ZHANG C P, HAN K H, ZHANG D L.Face stability analysis of shallow circular tunnels in cohesive-frictional soils[J]. Tunnelling and Underground Space Technology, 2015, 50(8): 345-357.
    [26] SALVADOR S, JIMENEZ R.A tunnel failure mechanism for layered ground, considering the possibility of partial collapse[J]. Tunnelling and Underground Space Technology, 2015, 50(3): 182-192.
  • 期刊类型引用(18)

    1. 宋健,潘驭航,陆朱汐,姬建,张飞,高玉峰. 考虑场地效应的多点地震动作用下边坡永久位移分析. 岩土工程学报. 2025(01): 65-75 . 本站查看
    2. 刘中宪,卢飞龙,边煜凯,黄振恩. 甘肃文县城关镇山体-沉积河谷三维地震动IBEM模拟. 防灾减灾工程学报. 2025(01): 1-12 . 百度学术
    3. 刘中宪,周涛,黄振恩,黄磊,章博峰. 基于快速边界元方法的倾滑断层近场效应和盆地聚焦效应耦合作用研究. 应用力学学报. 2024(04): 896-906 . 百度学术
    4. 陈家旺,黄博,凌道盛,王楠. SV波斜入射作用下梯形沉积河谷场地地震动分析. 地基处理. 2024(05): 434-443 . 百度学术
    5. 范观盛,黄靥欢,刘春,乐天呈. 基于MatDEM的岩石应力波传播与衰减特性敏感性分析. 高校地质学报. 2023(03): 479-486 . 百度学术
    6. 何卫平,李小军,杜修力,姚惠芹. P波入射分界面叠加区质点运动形成机制与峰值规律. 振动与冲击. 2023(18): 81-87+163 . 百度学术
    7. 蔡曼琳,丁海平,于彦彦. 圆弧形沉积谷地在平面SV波入射下地震响应的有限元分析. 世界地震工程. 2022(01): 229-240 . 百度学术
    8. Zhihui Zhu,Yongjiu Tang,Zhenning Ba,Kun Wang,Wei Gong. Seismic analysis of high-speed railway irregular bridge–track system considering V-shaped canyon effect. Railway Engineering Science. 2022(01): 57-70 . 必应学术
    9. 蔡曼琳. 圆弧形沉积谷地在平面SV波入射下地震响应. 四川建材. 2022(05): 63-64 . 百度学术
    10. 阙仁波. 对地震危险性分析的示例性探讨. 四川建筑科学研究. 2022(03): 10-19 . 百度学术
    11. 常晁瑜,薄景山,乔峰,段玉石,张毅毅. 地震动强度对黄土地震滑坡后壁形态的影响. 自然灾害学报. 2022(03): 106-115 . 百度学术
    12. Mohsen Isari,Reza Tarinejad. Introducing an effective coherence function to generate non-uniform ground motion on topographic site using time-domain boundary element method. Earthquake Engineering and Engineering Vibration. 2021(01): 89-100 . 必应学术
    13. 李郑梁,李建春,刘波,聂萌萌. 浅切割的高山峡谷复杂地形的地震动放大效应研究. 工程地质学报. 2021(01): 137-150 . 百度学术
    14. 权雪瑞,黄靥欢,刘春,郭长宝. 川藏铁路线V形深切河谷地形地震放大效应数值模拟. 现代地质. 2021(01): 38-46 . 百度学术
    15. 刘中宪,刘英,孟思博,黄磊. 基于间接边界元法的近断层沉积谷地地震动模拟. 岩土力学. 2021(04): 1141-1155+1169 . 百度学术
    16. 梁建文,吴孟桃,巴振宁. 流体饱和半空间二维地形三分量弹性波散射间接边界元模拟. 地球物理学报. 2021(08): 2766-2779 . 百度学术
    17. 邓鹏. 单体边坡地形的地震动力响应及其放大效应的数值分析. 地震学报. 2020(03): 349-361+378 . 百度学术
    18. 孔宪京,周晨光,邹德高,余翔. 高土石坝-地基动力相互作用的影响研究. 水利学报. 2019(12): 1417-1432 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 41
出版历程
  • 收稿日期:  2016-10-13
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回