Filling standards and gradation optimization of rockfill materials
-
摘要: 基于分形理论,进行了大量堆石料室内相对密度试验、压缩试验以及三轴试验,对堆石料级配与干密度、压缩模量、破坏强度、颗粒破碎等工程特性之间的关系进行了深入研究。结果表明:①级配对堆石料的物理力学性质影响明显,且随着试验应力的增加,其差异性越来越大。如粒度分形维数D在2.22~2.63的良好级配范围内,制样相对密度取1.0时,堆石料干密度在2.026~2.311 g/cm3之间,相差14%;在3.2~6.4 MPa压力范围内的压缩模量相差2.47倍;制样相对密度取0.8时,在1.6 MPa围压时的三轴试验破坏剪应力相差23%。②相同相对密度条件下,随着粒度分形维数的增加,堆石料的极值干密度或孔隙率、压缩模量、破坏应力均表现为先增大、后减小的规律,在D=2.56~2.62附近均存在极值点,对应P5含量在35%左右,细粒含量过多时的“砂化”现象,导致颗粒骨架效应减弱,堆石的工程性质劣化,极值点对应的临界分形维数控制堆石料的工程性质。③堆石料的粒度分形维数与颗粒破碎之间存在良好的规律,即粒度分形维数越高,颗粒破碎越小,可通过级配优化设计控制堆石料的颗粒破碎。④基于堆石体的孔隙率可描述为粒度分形维数和相对密度的函数,首次提出了基于变形控制的孔隙率和相对密度双控指标,作为高坝堆石体的填筑标准,并结合如美300 m级堆石坝,提出了堆石料级配优化确定的方法。Abstract: Based on the fractal theory, a large number of relative density tests, compression tests and triaxial tests on rockfill are carried out. The relationships among gradation, dry density, compressive modulus, failure strength and particle breakage of rockfill are thoroughly investigated. The results show that: (1) The particle gradation has obvious effect on the physical and mechanical properties of rockfill, such as when the particle fractal dimension D is in a good gradation ranging from 2.22 to 2.63, the relative density of samples is 1.0, and the dry density of rockfill is 2.026 ~ 2.311 g/cm3, the differences increase by 14%. The compressive modulus in the range of 3.2 ~ 6.4 MPa increases by 2.47 times. The test breaking strength of triaxial tests under confining pressure of 1.6 MPa increases by 23%. (2) Under the same relative density, with the increase of the particle fractal dimension D, the values of extreme dry density or porosity, compressive modulus and shear failure strength of rockfill materials increase firstly and then decrease, the extreme points occur at D = 2.56 ~ 2.62, and the corresponding P5 content is about 35%. The differences of the above values are more and more obvious with the increasing stress. When the content of fine particles is too high, the "sanding" phenomenon decreases the particle matrix effect and the engineering properties of rockfill are deteriorated, and the critical fractal dimension corresponding to the extreme points is adopted to control the engineering properties of rockfill materials. (3) There is a good rule between the fractal dimension of rockfill and the particle crushing, that is, the higher the fractal dimension of the particle gradation is, the smaller the particle crushing is, and it is effective to control the particle crushing of rockfill through the optimal design of the gradation. (4) Because the porosity of rockfill can be described as a function of fractal dimension and relative density of particles, the double control standards of porosity and relative density based on the deformation control of high
-
Keywords:
- fractal theory /
- rockfill material /
- porosity /
- relative density /
- filling standard /
- particle breakage /
- gradation optimization
-
[1] 周建平, 杨泽艳, 陈观福. 我国高坝建设的现状和面临的挑战[J]. 水利学报, 2006, 37(12): 1433-1438.
(ZHOU Jian-ping, YANG Ze-yan, CHEN Guan-fu.Status and challenges of high dam consructions in China[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1433-1438. (in Chinese))[2] COOKE J B.Concrete-faced rockfill dam[J]. International Water Power & Dam Construction, 1991, 43(1): 11-15. [3] DLT5395—2007碾压式土石坝设计规范[S]. 2007.
(DLT5395—2007 Design specification for rolled earth-rock fill dams[S]. 2007. (in Chinese))[4] DLT 5016—2011混凝土面板堆石坝设计规范[S]. 2011.
(DLT 5016—2011 Design code for concrete face rockfill dams[S]. 2011. (in Chinese))[5] MCDOWELL G R, BOLTON M D, ROBERTSON D.The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2102. [6] MCDOWELL G R, BOLTON M D.On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679. [7] MCDOWELL G R.On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145. [8] TURCOTTE D L.Fractals and fragmentation[J]. Geophys Res, 1986, 91(B2): 1921-1926. [9] 张季如, 胡泳, 张弼文. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791.
(ZHANG Ji-ru, HU Yong, ZHANG Bi-wen.Fractal behavior of practical-size distribusion during partical crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese))[10] ZHU S, FENG Y M, FENG S R, et al.Particles gradation optimization of blasting rockfill based on fractal theory[J]. Advanced Materials Research, 2011, 366: 469-473. [11] 吴莹, 马刚, 周伟. 基于分形理论的堆石料级配优化研究[J]. 岩土力学, 2016, 37(7): 1977-1985.
(WU Ying, MA Gang, ZHOU Wei.Optimization of gradation of rockfill materials based on the fractal theory[J]. Rock and Soil Mechanics, 2016, 37(7): 1977-1985. (in Chinese))[12] 朱晟, 邓石德, 宁志远. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39(6): 1151-1155.
(ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al.Gradation design method of rockfill materials based on the fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese))[13] 朱晟, 王永明, 翁厚洋. 粗粒筑坝材料密实度的缩尺效应研究[J]. 岩石力学与工程学报, 2011, 30(2): 348-357.
(ZHU Sheng, WANG Yong-ming, WENG Hou-yang.Study of scale effect of density of coarse-grained dam materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 348-357. (in Chinese))[14] 陈镠芬, 高庄平, 朱俊高, 等. 粗粒土级配及颗粒破碎分形特性[J]. 中南大学学报(自然科学版), 2015(9): 3446-3453.
(CHEN Liu-fen, GAO Zhuang-ping, ZHU Jun-gao, etc. Gradation of coarse grained soil and fractal geometry character of particle breakage[J]. Journal of Central South University (Science and Technology), 2015(9): 3446-3453. (in Chinese))[15] 蔡正银, 李小梅, 关云飞. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929.
(CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei.Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese))[16] 赵娜, 左永振, 王占彬. 基于分形理论的粗粒料级配缩尺方法研究[J]. 岩土力学, 2016(12): 3513-3519.
(ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin.Grading scale method for coarse-grained soils based on fractal theory[J]. Rock and Soil Mechanics, 2016(12): 3513-3519. (in Chinese))[17] 刘杰. 土石坝渗流控制理论基础及工程经验教训[M]. 北京: 中国水利水电出版社, 2006.
(LIU-Jie.Earth and rockfill dam foundation seepage control theory and engineering experiences and lessons[M]. China Water & Power Press, 2006. (in Chinese))[18] 程展林, 丁红顺. 论堆石料力学试验中的不确定性[J]. 岩土工程学报, 2005, 27(10): 1222-1225.
(CHENG Zhan-lin, DING Hong-shun.Research on indeterminacy of rockfill test result[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1222-1225. (in Chinese)) -
期刊类型引用(18)
1. 宋健,潘驭航,陆朱汐,姬建,张飞,高玉峰. 考虑场地效应的多点地震动作用下边坡永久位移分析. 岩土工程学报. 2025(01): 65-75 . 本站查看
2. 刘中宪,卢飞龙,边煜凯,黄振恩. 甘肃文县城关镇山体-沉积河谷三维地震动IBEM模拟. 防灾减灾工程学报. 2025(01): 1-12 . 百度学术
3. 刘中宪,周涛,黄振恩,黄磊,章博峰. 基于快速边界元方法的倾滑断层近场效应和盆地聚焦效应耦合作用研究. 应用力学学报. 2024(04): 896-906 . 百度学术
4. 陈家旺,黄博,凌道盛,王楠. SV波斜入射作用下梯形沉积河谷场地地震动分析. 地基处理. 2024(05): 434-443 . 百度学术
5. 范观盛,黄靥欢,刘春,乐天呈. 基于MatDEM的岩石应力波传播与衰减特性敏感性分析. 高校地质学报. 2023(03): 479-486 . 百度学术
6. 何卫平,李小军,杜修力,姚惠芹. P波入射分界面叠加区质点运动形成机制与峰值规律. 振动与冲击. 2023(18): 81-87+163 . 百度学术
7. 蔡曼琳,丁海平,于彦彦. 圆弧形沉积谷地在平面SV波入射下地震响应的有限元分析. 世界地震工程. 2022(01): 229-240 . 百度学术
8. Zhihui Zhu,Yongjiu Tang,Zhenning Ba,Kun Wang,Wei Gong. Seismic analysis of high-speed railway irregular bridge–track system considering V-shaped canyon effect. Railway Engineering Science. 2022(01): 57-70 . 必应学术
9. 蔡曼琳. 圆弧形沉积谷地在平面SV波入射下地震响应. 四川建材. 2022(05): 63-64 . 百度学术
10. 阙仁波. 对地震危险性分析的示例性探讨. 四川建筑科学研究. 2022(03): 10-19 . 百度学术
11. 常晁瑜,薄景山,乔峰,段玉石,张毅毅. 地震动强度对黄土地震滑坡后壁形态的影响. 自然灾害学报. 2022(03): 106-115 . 百度学术
12. Mohsen Isari,Reza Tarinejad. Introducing an effective coherence function to generate non-uniform ground motion on topographic site using time-domain boundary element method. Earthquake Engineering and Engineering Vibration. 2021(01): 89-100 . 必应学术
13. 李郑梁,李建春,刘波,聂萌萌. 浅切割的高山峡谷复杂地形的地震动放大效应研究. 工程地质学报. 2021(01): 137-150 . 百度学术
14. 权雪瑞,黄靥欢,刘春,郭长宝. 川藏铁路线V形深切河谷地形地震放大效应数值模拟. 现代地质. 2021(01): 38-46 . 百度学术
15. 刘中宪,刘英,孟思博,黄磊. 基于间接边界元法的近断层沉积谷地地震动模拟. 岩土力学. 2021(04): 1141-1155+1169 . 百度学术
16. 梁建文,吴孟桃,巴振宁. 流体饱和半空间二维地形三分量弹性波散射间接边界元模拟. 地球物理学报. 2021(08): 2766-2779 . 百度学术
17. 邓鹏. 单体边坡地形的地震动力响应及其放大效应的数值分析. 地震学报. 2020(03): 349-361+378 . 百度学术
18. 孔宪京,周晨光,邹德高,余翔. 高土石坝-地基动力相互作用的影响研究. 水利学报. 2019(12): 1417-1432 . 百度学术
其他类型引用(23)