• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

生物炭改性土的甲烷吸附试验研究

江超, 赵仲辉, 刘秉岳

江超, 赵仲辉, 刘秉岳. 生物炭改性土的甲烷吸附试验研究[J]. 岩土工程学报, 2017, 39(s1): 116-120. DOI: 10.11779/CJGE2017S1023
引用本文: 江超, 赵仲辉, 刘秉岳. 生物炭改性土的甲烷吸附试验研究[J]. 岩土工程学报, 2017, 39(s1): 116-120. DOI: 10.11779/CJGE2017S1023
JIANG Chao, CHIU C F, LIU Bing-yue. Laboratory study on methane adsorption of biochar-modified soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 116-120. DOI: 10.11779/CJGE2017S1023
Citation: JIANG Chao, CHIU C F, LIU Bing-yue. Laboratory study on methane adsorption of biochar-modified soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 116-120. DOI: 10.11779/CJGE2017S1023

生物炭改性土的甲烷吸附试验研究  English Version

基金项目: 中央高校基本科研业务费项目(2017B00914)
详细信息
    作者简介:

    江超(1992-),男,硕士研究生,主要从事环境岩土相关研究。E-mail:hhuzxq@163.com。

    通讯作者:

    赵仲辉,E-mail:cf.chiu@gmail.com

Laboratory study on methane adsorption of biochar-modified soil

  • 摘要: 生物覆盖层是一种新型生活垃圾填埋场覆盖层,对比传统的压实黏土覆盖层其具有较高的甲烷氧化能力,减少垃圾填埋场甲烷的释放。生物炭作为生物覆盖介质,除了提高土壤甲烷氧化能力之外,其较大的比表面积还能增加甲烷吸附能力。为更好地理解生物炭对土壤的甲烷吸附特性的影响,通过批量吸附试验研究生物炭改性土在不同甲烷初始浓度与生物炭掺量下的甲烷吸附能力。试验结果表明添加生物炭能提高土壤甲烷吸附能力,相比较原土,炭掺量为20%的改性土最大甲烷吸附量提高了一个量级,甲烷吸附能力得到明显提高主要得益于生物炭的多孔结构。并且生物炭改性土的吸附特性均符合Lagergren准二级吸附动力模型和Langmuir等温吸附模型。
    Abstract: Bio-cover is a novel MSW landfill cover. Compared to the conventional compacted clay cover, it exhibits a higher methane oxidization capacity to mitigate methane emissions from landfill. Use of biochar in the bio-cover can enhance methane oxidization and adsorption capacity because of its high specific surface area. To better understand the effects of biochar on the methane adsorption capacity, a series of batch adsorption tests on a biochar-modified soil are conducted under different initial methane concentrations and biochar contents. The test results show that the methane absorption capacity increases with the increasing biochar content. Compared to the untreated soil, an addition of 20% biochar (weight of dry soil) can increase around 10 times the maximum amount of methane adsorption. It is postulated that the highly porous structure of biochar is the principal factor that enhances the methane adsorption capacity. Furthermore, the pseudo-second order kinetics and the Langmuir isotherm models can be used to evaluate the adsorption process of the biochar-modified soil.
  • [1] HUMER M, LECHNER P. Microbial methane oxidation for the reductionof landfill gas emissions[J]. Journal of Solid Waste Technology and Management, 2001, 27(3/4): 146-151.
    [2] 杨益彪, 詹良通, 陈云敏, 等. 垃圾填埋场覆盖黄土的甲烷氧化能力及其影响因素研究[J]. 中国环境科学, 2015, 35(2): 484-492. (YANG Yi-biao, ZHAN Liang-tong, CHEN Yun-ming, et al. Methane oxidation capacity of landfill cover loess and its impact factors[J]. China Environmental Engineering, 2015, 35(2): 484-492. (in Chinese))
    [3] YAGHOUBI P. Development of biochar-amended landfill cover for landfill gas mitigation[D]. Chicago: University of Illinois at Chicago, 2011.
    [4] 刘秉岳, 赵仲辉, 涂欢欢, 等. 生物炭改性填埋场覆盖粉土的甲烷氧化能力试验研究[J]. 科学技术与工程, 2015, 15(36): (LIU Bing-yue, ZHAO Zhong-hui, TU Huan-huan, et al. Methane oxidation capacity of landfill cover biochar amended silt[J]. Science Technology and Engineering, 2015, 15(36): (in Chinese))
    [5] KARAMI N, CLEMENTE R, MORENO-JIMNEZ E, et al. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass[J]. Journal of Hazardous Materials, 2011, 191(1/2/3): 41-8.
    [6] 孙 辉, 薛文平, 姜莉莉, 等. 活性炭纤维吸附苯系物影响因素的研究[J]. 环境科学与技术, 2007, 30(7): 18-19. (SUN Hui, XUE Wen-ping, JIANG Li-li,et al. Impact factors of benzenes adsorption by activated carbon fiber[J]. Environmental Science & Technology, 2007, 30(7): 18-19. (in Chinese))
    [7] SADASIVAM B Y, REDDY K R. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars[J]. Journal of Environmental Management, 2015, 158: 11-23.
    [8] WANG S L, TZOU Y M, LU Y H, et al. Removal of 3-chlorophenol from water using rice-straw-based carbon[J]. Journal of Hazardous Materials, 2007, 147(S1/2): 313-318.
    [9] SEGERS R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes[J]. Biogeochemistry, 1998, 41(1): 23 51.
    [10] 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 2版. 北京: 化学工业出版社, 2006. (KONDO S, ISHIKAWA T, ABE I. Adsorption science[M]. 2nd ed. Beijing: Chemical Industry Press, 2006. (in Chinese))
  • 期刊类型引用(33)

    1. 刘富成,陈彦丽. 大型深基坑工程可靠性及施工变形特征分析. 砖瓦. 2025(02): 152-154+158 . 百度学术
    2. 韩苗苗. 不同开挖与支护方式下隧道洞口深基坑仰坡水平位移变形规律研究. 四川水泥. 2024(01): 233-235 . 百度学术
    3. 何润洲,罗胜亮,杨忠平,谢惠珍. 深厚淤泥土深大基坑群同步开挖对紧邻建筑的影响. 地下空间与工程学报. 2024(02): 577-586 . 百度学术
    4. 王安东,张学钢,宁波. 基于数据分解重构和AM-CRU-MLR模型的基坑变形研究与应用. 粉煤灰综合利用. 2024(05): 65-70 . 百度学术
    5. 诸颖,任向东,张健,姚瑶. 软土地区锁扣型钢地下连续墙适用性研究. 工程建设与设计. 2024(23): 36-38 . 百度学术
    6. 李小军. 地下隧道深基坑仰坡开挖与支护数值模拟及安全性分析. 安全与环境学报. 2023(03): 812-818 . 百度学术
    7. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 . 百度学术
    8. 高亚鹏,赵文辉,魏锜,杨有海. 某高速铁路明挖隧道黄土深基坑变形规律分析. 兰州工业学院学报. 2023(02): 60-65 . 百度学术
    9. 严长江,李旺,张子辰. 某黄土深基坑开挖变形预测分析. 低温建筑技术. 2023(03): 101-104 . 百度学术
    10. 梁二雷,王冰辉,郑功博,吴静. 临河倾斜互层下深基坑变形及渗流数值分析. 工业建筑. 2023(03): 188-196 . 百度学术
    11. 赵军,胡聪伟,刘飞. 桩锚支护土岩深基坑地表沉降特征分析. 低温建筑技术. 2023(08): 142-145 . 百度学术
    12. 曹卫平,席茂阳,赵呈,赵敏. 局部破坏对内撑式排桩支护基坑影响的模型试验. 水资源与水工程学报. 2023(05): 190-197 . 百度学术
    13. 王钰轲,付宏松,马露. 行车荷载与基坑开挖对新建及既有基坑坑底和地连墙的影响研究. 三峡大学学报(自然科学版). 2022(02): 77-82 . 百度学术
    14. 王贺. 城市双线隧道车站施工工艺优化及稳定性研究. 价值工程. 2022(17): 77-79 . 百度学术
    15. 王贺. 城市地铁高架车站BIM建模及可视化研究. 建筑技术开发. 2022(15): 118-120 . 百度学术
    16. 程学昌. 高孔隙水压地层基坑降水开挖施工技术研究. 山西建筑. 2021(01): 68-69+74 . 百度学术
    17. 罗智勇,宋林波,丁增志,成启航,王海伦. 复杂地铁车站深基坑体系的变形分析. 四川建筑. 2021(01): 99-101 . 百度学术
    18. 李又云,杨立新,刘伟,王欢,贺隆贵,李昊阳. 悬挂式止水帷幕深基坑分级降水开挖变形特性. 科学技术与工程. 2021(05): 1995-2001 . 百度学术
    19. 孔令华,胡军然,牛文宣,于洋,楚袁庆. 邻近老旧房屋狭长深基坑开挖施工数值模拟及周边环境影响性分析. 建筑结构. 2021(S1): 1945-1951 . 百度学术
    20. 苏继超,武俊琦,李媛. 基于青岛上软下硬地层地铁地下连续墙深基坑的变形特征研究. 工程与建设. 2021(03): 506-508 . 百度学术
    21. 赵得杰,毕经东,李浩. 基于ARIMA模型的基坑变形预测研究. 粉煤灰综合利用. 2021(05): 40-45 . 百度学术
    22. 陈世凯,李坤杰,闫洪江,严涛,王二力,罗成勇,刘大刚. 超大埋深基坑降水开挖结构安全性分析及对地表沉降影响. 路基工程. 2020(02): 53-57 . 百度学术
    23. 孙小力,孙铁成,张旭,高晓静,刘灿灿. 地铁基坑开挖数值模拟及变形特征研究. 施工技术. 2020(07): 41-44+53 . 百度学术
    24. 谭伟. 基于AutoMos自动化监测系统在地铁工程中的应用与研究. 土木建筑工程信息技术. 2020(02): 28-36 . 百度学术
    25. 谭伟. 临近边坡地铁基坑开挖数值模拟研究. 土工基础. 2020(02): 176-180 . 百度学术
    26. 丁猛. 密集建筑老城区地铁车站基坑开挖技术. 四川建筑. 2020(02): 67-69 . 百度学术
    27. 蒙国往,农忠建,吴波,黄劲松,韦汉. 地铁车站深基坑开挖变形及数值模拟分析. 中国安全生产科学技术. 2020(07): 145-151 . 百度学术
    28. 王晓静,李立云,杜修力,王子英. 削桩施作诱发基坑本体力学响应数值分析. 防灾科技学院学报. 2020(03): 10-17 . 百度学术
    29. 赵宏宇,高春雷,许利东,童根树,张磊. 采用预应力型钢组合支撑的某软土深基坑监测分析研究. 工程勘察. 2020(11): 7-12 . 百度学术
    30. 吕彦朋,朱宏光,张新冈,刘智军. 铁路数据中心建筑基坑支护关键技术及监测分析. 铁道建筑. 2019(05): 112-116 . 百度学术
    31. 方焘,舒新亮,王海龙,石钰锋. 半刚性半盖挖体系临界施工荷载研究. 兰州交通大学学报. 2019(02): 1-8 . 百度学术
    32. 尹鸿达,罗正东,李检保,黄河,袁朝阳,吴鹏. 富水砂砾石地层基坑开挖超孔压变化规律研究. 市政技术. 2019(05): 246-249 . 百度学术
    33. 刘志刚. 软土地区地铁深基坑监测分析及控制措施研究. 公路. 2019(10): 239-244 . 百度学术

    其他类型引用(39)

计量
  • 文章访问数:  342
  • HTML全文浏览量:  4
  • PDF下载量:  255
  • 被引次数: 72
出版历程
  • 收稿日期:  2016-11-27
  • 发布日期:  2017-11-19

目录

    /

    返回文章
    返回