• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同接触状态岩石节理的剪切力学性质试验研究

唐志成, 王晓川

唐志成, 王晓川. 不同接触状态岩石节理的剪切力学性质试验研究[J]. 岩土工程学报, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021
引用本文: 唐志成, 王晓川. 不同接触状态岩石节理的剪切力学性质试验研究[J]. 岩土工程学报, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021
TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021
Citation: TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021

不同接触状态岩石节理的剪切力学性质试验研究  English Version

基金项目: 国家自然科学基金面上项目(41672302,41731284,11672360,41402247,51504166); 高等学校博士学科点专项科研基金项目(20130141120051)
详细信息
    作者简介:

    唐志成(1983- ),男,教授,主要从事岩石力学方面的教学科研工作。E-mail: zctang@cug.edu.cn。

    通讯作者:

    王晓川,E-mail:XCW001@whu.edu.cn

  • 中图分类号: TU45

Experimental studies on mechanical behaviour of rock joints with varying matching degrees

  • 摘要: 除粗糙度外,节理上、下面壁的接触状态是影响其剪切力学性质的重要因素。采用水泥砂浆制备若干不同形貌的节理,对其上、下面壁沿剪切方向错开不同的位移量、形成不同的接触状态以模拟不同偶合度的节理,在常法向应力条件下进行试验研究。试验结果表明:峰值剪切强度随错开位移量的增加而呈非线性减少,但错开位移对峰值剪切强度的影响随法向应力的增加而减弱;峰值剪切位移随错开位移量的增加逐步变大;剪切刚度随错开位移量的增加逐步减少直至某一恒定值,且在高法向应力下错开位移量对剪切刚度的影响更为明显。采用几种不同的简单函数分析峰值剪切强度与错开位移量之间的关系,在偶合节理峰值剪切强度准则的基础上提出不同接触状态节理的峰值剪切强度准则。与已有的准则相比,新准则采用的描述节理接触状态的参数易于确定且更为客观。
    Abstract: Besides surface roughness, the matching degree between the joint upper and lower blocks is another important factor affecting the shear behavior of a rough rock joint. A simplified way, by imposing varying magnitudes of horizontal dislocation along the shear direction between the joint upper and lower blocks, is used to model the different matching degrees of a joint that is made by cement. A large number of direct shear tests are then performed under constant normal stress condition to investigate the shear behavior of rock joints under the varying matching degrees. The experimental observations indicate that with the increase of dislocation, the peak shear strength decreases and has a larger reduction rate under the lower normal stress level. With the increasing dislocation, the peak shear displacement increases, and the shear stiffness decreases and gradually approaches a constant. The influence of dislocation on the shear stiffness is more prominent under a higher applied normal stress. Several simple combinations of roughness parameters and normalized dislocation are used to perform regression analysis, and a new empirical peak shear strength criterion is put forward to capture the peak shear strength degradation of rock joints under different matching degrees. A preliminary comparison between the proposed criterion and the existing criteria is also provided. The new parameters for the proposed criterion can be easily determined in the laboratory.
  • [1] BARTON N, CHOUBEY V. The shear strength of rock joint in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54.
    [2] PATTON F D. Multiple modes of shear failure in rock[C]// Proceedings of the 1st Congress of International Society for Rock Mechanics. Lisbon, 1966.
    [3] LADANYI B, ARCHAMBAULT G. Simulation of the shear behavior of a jointed rock mass[C]// Proceedings of the 11th US Symposium on Rock Mechanics (USRMS). Berkeley, 1969: 105-125.
    [4] KULATILAKE P H S W, SHOU G, HUANG T H, et al. New peak shear strength criteria for anisotropic rock joints[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1995, 32(7): 673-697.
    [5] GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Science, 2003, 40(1): 25-40.
    [6] XIA C C, TANG Z C, XIAO W M, et al. New peak shear strength criterion of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 47(2): 387-400.
    [7] 唐志成, 夏才初, 宋英龙, 等. Grasselli节理峰值抗剪强度公式再探[J]. 岩石力学与工程学报, 2012, 31(2): 356-364. (TANG Zhi-cheng, XIA Cai-chu, SONG Ying-long, et al. Discussion about Grasselli’s peak shear strength criterion for rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 356-364. (in Chinese))
    [8] 杨 洁, 荣 冠, 程 龙, 等. 节理峰值抗剪强度试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 884-894. (YANG Jie, RONG Guan, CHENG Long, et al. Experimental study of peak shear strength of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 884-894. (in Chinese))
    [9] ZHAO J. Joint surface matching and shear strength part A: Joint matching coefficient (JMC) [J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(2): 173-178.
    [10] ZHAO J. Joint surface matching and shear strength part B: JRC-JMC shear strength criterion[J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(2): 179-185.
    [11] OH J, KIM GW. Effect of opening on the shear behavior of a rock joint[J]. Bulletin of Engineering Geology and the Environment, 2010, 69(3): 389-395.
    [12] BEER A J, STEAD D, COGGAN J S. Estimation of the joint roughness coefficient (JRC) by visual[J]. Rock Mech Rock Eng, 2002, 35(1): 65-74.
    [13] HONG E S, LEE J S, LEE I M. Underestimation of roughness in rough rock joints[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 2008, 32(11): 1385-1403.
    [14] TANG Z C. Mechanical behaviors of rock joint under different contact state and columnar jointed rock mass[D]. Shanghai: Tongji University, 2013.
    [15] TANG Z C, LIU Q S, XIA C C, et al. Mechanical model for predicting closure behavior of rock joints under normal stress[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2287-2298.
    [16] GRASSELLI G, WIRTH J, EGGER P. Quantitative three- dimensional description of a rough surface and parameter evolution with shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789-800.
    [17] TATONE B S A, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. Review Scientific Instrument, 2009, 80(12): 125110.
  • 期刊类型引用(19)

    1. 王浩,付德伟,郭剑波,晏田田,宋昊明. 黄原胶和木质素纤维改良粉砂土抗压强度特性及微观机理分析. 科学技术与工程. 2025(04): 1602-1612 . 百度学术
    2. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 . 百度学术
    3. 尹晓雯. 冻融循环下纤维-造纸废物联合改良淤泥质土力学性能研究. 粘接. 2024(02): 139-142 . 百度学术
    4. 朱锐,王燕杰,黄英豪,张文,邢玮,周峰. 木质素纤维改良膨胀土的冻融特性及微观机理. 农业工程学报. 2024(02): 263-272 . 百度学术
    5. 周恩全,张曼,居东煜,王龙,李护良. 干湿循环下木质素改良粉土抗剪强度特性. 工程科学与技术. 2024(02): 208-216 . 百度学术
    6. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 . 百度学术
    7. 徐鑫,于忠禹,牛岑岑,苑晓青,雷浩民. 双聚合物改良分散性土的力学特性及机制研究. 广西大学学报(自然科学版). 2024(03): 490-502 . 百度学术
    8. 朱怀太,欧尔峰,姜琪,赵永春,赵建沅. 冻融作用下复合相变材料改良黄土力学特性研究及机理分析. 防灾减灾工程学报. 2024(03): 715-724 . 百度学术
    9. 何菲,雷婉玉,岳亚强,毛尔清,刘清泉,王旭. 基于CiteSpace知识图谱的冻土路基研究现状与趋势分析. 冰川冻土. 2024(03): 891-908 . 百度学术
    10. 李琦峰,邢峥光,党冰,彭尔兴,胡晓莹. 木质素纤维-MICP固化粉土在冻融循环作用下的力学性能研究. 冰川冻土. 2024(06): 1828-1838 . 百度学术
    11. 徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 . 百度学术
    12. 任昆,于泽宁,石孟奇. 冻融条件下水泥煤渣改良土非均匀损伤特性. 铁道工程学报. 2023(07): 15-19+26 . 百度学术
    13. 董超凡,张吾渝,孙翔龙,解邦龙. 木质素纤维改良黄土抗剪强度的试验研究. 安全与环境工程. 2022(02): 102-110 . 百度学术
    14. 彭丽云,华小宁,刘德欣,齐吉琳. 秸秆加筋粉土的冻胀特性研究. 冰川冻土. 2022(01): 241-250 . 百度学术
    15. 董超凡,林城,张吾渝,孙翔龙,黄雨灵. 寒旱区木质素纤维改良黄土的热学与力学性质研究. 干旱区资源与环境. 2022(05): 119-126 . 百度学术
    16. 董超凡,张吾渝,张瑞星,黄雨灵,高英. 冻融作用下木质素纤维改良黄土力学与热学特性试验研究. 冰川冻土. 2022(02): 612-622 . 百度学术
    17. 阮波,袁忠正,张佳森,郑世龙,张向京,聂如松. 养护条件对纤维水泥改良风积沙强度及微观结构影响. 铁道科学与工程学报. 2022(06): 1594-1604 . 百度学术
    18. 柴寿喜,张琳,魏丽,田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构. 水文地质工程地质. 2022(05): 96-105 . 百度学术
    19. 程卓,崔高航,高原昊,刚浩航,高泽宁,杨政,张鑫. 季冻区粉煤灰加固路基土力学性能试验研究. 硅酸盐通报. 2021(11): 3854-3864+3875 . 百度学术

    其他类型引用(33)

计量
  • 文章访问数:  416
  • HTML全文浏览量:  7
  • PDF下载量:  289
  • 被引次数: 52
出版历程
  • 收稿日期:  2016-10-08
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回