Experimental study on mechanical behavior of weakly structured soft clays
-
摘要: 对取自不同地区的两种弱胶结结构性软黏土原状(undisturbed)样、重塑(remolded)样和泥浆(reconstituted)样进行了单向压缩和三轴剪切试验,分别得到土样的压缩曲线和应力-应变曲线。试验结果表明:原状样的压缩曲线为陡降型曲线,而不同制样土样的压缩曲线存在明显的差异;由于孔隙比和孔径分布对土体抗剪强度的综合影响,不仅导致相同围压下三轴剪切时孔隙比不同的重塑样和原状样强度差异较大,且孔隙比相近的不同土样的强度也存在不同程度的差异;若同一孔隙比下,两种软黏土的不同制样土样的强度关系均为原状样的强度最高,重塑样的强度最低,并可通过相近孔隙比下孔径大于0.2 μm的孔隙体积量和孔径分布均匀性可合理地解释3种制样土样强度高低的关系。由于不同制样土样的孔径分布的差异不会随固结压力的增大而消失,用参考孔隙比e* 10,简单表示土的孔隙比和孔径分布(即组构)参数,对压缩和剪切试验结果进行归一化整理后,发现不同土样的试验结果可归一化为相关度高的e/e* 10-σv曲线和ef/e* 10-qf曲线,证明结构屈服应力后,不同土样变形和强度差异主要是由孔隙比及孔径分布(即组构)的不同引起的,用参考孔隙比e* 10简单表示土的组构参数是有效的。Abstract: The oedometer and triaxial shear tests on undisturbed, remolded and reconstituted samples of two different weakly bonding soft clays are carried out to obtain the compression curves and stress-strain curves. The test results show that the compressibility abruptly increases in the compression curves of undisturbed samples, and the difference among compression curves of different samples is obvious. The strength is not only different for undisturbed and remolded samples for the difference in void ratio, but also different for samples with the close void ratio when they are sheared under the same confining pressures, because the strength of clay is affected by both void ratio and pore-size distribution. The undisturbed samples will have the highest strength and the remolded samples will have the lowest strength if they have the same void ratio, and it is valid for different soft clays used in the tests. The relation of strength among different samples can be explained reasonably by the volume of pore per unit soil volume with its diameter greater than 0.2 μm and the uniformity of pore-size distribution. Because the difference of the pore-size distribution curves among different samples cannot be eliminated by the increasing consolidation pressure, the reference void ratio e* 10, a parameter simply describing the void ratio and pore size distribution of soil (fabric) is introduced. The compression and shear test results of different samples dealt with by the reference void ratio e* 10 show that they can be normalized to unique e/e* 10-σv and ef/e* 10-qf curves with high correlation. The normalized results show that if the stress is larger than the structures yield stress, the difference in compression and shear characteristics among the samples are caused by the void ratio and pore-size distribution (fabric), and it can be simply and usefully described by the reference void ratio e* 10.
-
Keywords:
- soft clay /
- compression curve /
- stress-strain curve /
- pore-size distribution /
- reference void ratio
-
[1] MITCHELL J K. Fundamentals of soil behavior[M]. New York: Wiley, 1976. [2] LEROUEIL S, VANGHAN P R. The general and congruent effects of structure in soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488. [3] BURLAND J B. On the compressibility and shear strength of natural clay [J]. Géotechnique, 1990, 40(3): 329-378. [4] BURLAND J B, RAMPELLO S, GEORGIANNOU V N, et al. A laboratory study of the strength of four stiff clays[J]. Géotechnique, 1996, 46(3): 491-514. [5] 吕海波, 汪 稔, 孔令伟, 等. 结构性对琼州海峡软土压缩特性的影响[J]. 岩土力学, 2001, 22(4): 467-473. (LÜ Hai-bo, WANG Ren, KONG Ling-wei, et al. The influences of soil structure on compressibility of Qiongzhou Strait soft marine clay[J]. Rock and Soil Mechanics, 2001, 22(4): 467-473. (in Chinese)) [6] 陈铁林, 周 成, 沈珠江. 结构性黏土压缩和剪切特性试验研究[J]. 岩土工程学报, 2004, 26(1): 31-35. (CHEN Tie-lin, ZHOU Cheng, SHEN Zhu-jiang. Compression and shear test of structured clay[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 31-35. (in Chinese)) [7] 张先伟, 孔令伟, 李 峻, 等. 黏土触变过程中强度恢复的微观机理[J]. 岩土工程学报, 2014, 36(8): 1407-1413. (ZHANG Xian-wei, KONG Ling-wei, LI Jun, et al. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. (in Chinese)) [8] 孙德安, 高 游. 不同制样方法非饱和土的持水特性研究[J]. 岩土工程学报, 2015, 37(1): 91-97. (SUN De-an, GAO You. Water retention behavior of soils with different preparations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 91-97. (in Chinese)) [9] LACASSE S, BERRE T, LEFEBVRE G. Block sampling of sensitive clays[C]// Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 887-892. [10] VAID Y P, CAMPANELLA R G. Time-dependent behavior of undisturbed clays[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(7): 693-709. [11] ZHU J G, YIN J H. Strain-rate-dependent stress-strain behavior of overconsolidated Hong Kong marine clay[J]. Canadian Geotechnical Journal, 2000, 37(6): 1272-1282. [12] 齐剑峰, 栾茂田, 聂 影, 等. 饱和黏土剪切变形与强度特性试验研究[J]. 大连理工大学学报, 2008, 48(4): 551-556. (QI Jian-feng, LUAN Mao-tian, NIE ning, et al. Experiment -al study of shear and strength behavior of saturated clay[J]. Journal of Dalian University of Technology, 2008, 48(4): 551-556. (in Chinese)) [13] 刘汉民, 孟 斌, 吴 恒, 等. 冷冻与置换干燥法制备海积软土压汞试样的制备效果对比试验[C]//第十七届中国海洋(案)工程学术讨论会论文集. 南宁, 2015. (LIU Han-min, MENG Bin, WU Heng, et al. Comparative test on preparation effect of marine soft clay specimens for mercury intrusion porosimetry with freezing and drying methods[C]// Proceedings of 17th Conference on China Ocean Engineering. Nanning, 2015. (in Chinese)) [14] HONG Z S, SHEN S L, DENG Y Y, et al. Loss of soil structure for natural sedimentary clays[J]. Geotechnical Engineering, 2007, 160(3): 153-159. [15] BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269-278. [16] 吕海波, 赵艳林, 孔令伟, 等. 利用压汞试验确定软土结构性损伤模型参数[J]. 岩石力学与工程学报, 2005, 24(5): 854-858. (LÜ Hai-bo, ZHAO Yan-lin, KONG Ling-wei, et al. Determining parameters of damage model of soft soils using mercury intrusion porosimetry[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 854-858. (in Chinese)) [17] 张先伟, 孔令伟, 郭爱国, 等. 不同固结压力下强结构性黏土孔隙分布试验研究[J]. 岩土力学, 2014, 35(10): 2794-2800. (ZHANG Xian-wei, KONG Ling-wei, GUO Ai-guo, et al. Experiment study of pore distribution of strong structural clay under different consolidation pressures[J]. Rock and Soil Mechanics, 2014, 35(10): 2794-2800. (in Chinese)) [18] HONG Z S, YIN J, CUI Y J. Compression behaviour of reconstituted soils at high initial water contents[J]. Géotechnique, 2010, 60(9): 691-700. -
期刊类型引用(17)
1. 王铁行,赵翊豪,金鑫. 喷射秸秆加筋黄土的强度特性研究. 地下空间与工程学报. 2024(03): 800-811 . 百度学术
2. 陈婧逸,陈晓清,宋东日,吕明,蒋豪. 灌木根系形态对土体强度影响的大型直剪试验研究. 长江科学院院报. 2024(08): 120-127+163 . 百度学术
3. 程虎,李蒙,杨劭,张乃畅,李厚峰. 水陆交错带护坡植物固土抗蚀能力比较分析. 中国水土保持科学(中英文). 2024(03): 56-63 . 百度学术
4. 谭瑞琪,谢亚军,李欣然,姜宝莹,张桂荣. 植被防护岸坡加筋机理研究. 中国水运. 2023(06): 71-74 . 百度学术
5. 陈飞,谢蕴忠,王俊峰,张仕彬. 基于数值模拟方法的根系护坡研究进展. 科学技术与工程. 2023(16): 6728-6738 . 百度学术
6. 梅红,马柯,刘瑾,王禄艺,冯玉晗,齐梦瑶,胡梦园. 生态型稳定剂协同植物根系固土特性及机理研究. 水利水电科技进展. 2023(04): 52-58 . 百度学术
7. 蒋冬卫. 不同地区沿海港口物流业发展现状评价分析. 中国水运. 2023(11): 74-76 . 百度学术
8. 杜技能,王中珏,段继琪,王忠良,段青松. 生态护坡理论及技术研究现状综述. 水利与建筑工程学报. 2023(06): 211-220 . 百度学术
9. 徐华,袁海莉,王歆宇,王栋,陈建勋,荣才权. 根系形态和层次结构对根土复合体力学特性影响研究. 岩土工程学报. 2022(05): 926-935 . 本站查看
10. 杨家庆,鲁明星,吴冠辰,袁雪涛,李富平,许永利,李小光. 矿山边坡植被修复研究现状及发展趋势分析. 矿山测量. 2022(01): 83-87 . 百度学术
11. 穆奎,潘伟良,王利彬,李婷,陈雅雯,丁奠元. 生态河道植物护坡工程技术研究现状与展望. 水利与建筑工程学报. 2022(03): 206-216 . 百度学术
12. 毕银丽,罗睿,王双明. 接菌对紫花苜蓿根系抗拉性及根菌复合土体抗剪强度影响. 煤炭学报. 2022(06): 2182-2192 . 百度学术
13. 黄琛,张友谊,叶小兵. 基于SEEP/W的强震区根系土坡面物源失稳机制分析. 科技通报. 2022(07): 57-66+72 . 百度学术
14. 李杰. 河道整治中根系植被特征对岸坡改良土影响试验研究. 水利技术监督. 2022(10): 129-132+177 . 百度学术
15. 梅红,胡国长,王禄艺,梅绪哲,刘瑾,徐佳俊,杨欣雅,杨诺. 边坡植被固土抗冲刷特性及其护坡机理研究. 河北工程大学学报(自然科学版). 2022(04): 86-91 . 百度学术
16. 姜彤,李龙飞,薛雷,黄坤,丁昊,王昊宇. 乔木护坡效果物理模型试验研究. 科学技术与工程. 2022(35): 15546-15553 . 百度学术
17. 陈飞,施康,钱乾,罗特. 根土复合体材料的抗剪强度特性研究进展. 有色金属科学与工程. 2021(06): 96-104 . 百度学术
其他类型引用(16)