• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

回填EPS混合土的防滑悬臂式挡墙地震稳定性分析

高洪梅, 卜春尧, 王志华, 周薇, 陈国兴

高洪梅, 卜春尧, 王志华, 周薇, 陈国兴. 回填EPS混合土的防滑悬臂式挡墙地震稳定性分析[J]. 岩土工程学报, 2017, 39(12): 2278-2286. DOI: 10.11779/CJGE201712017
引用本文: 高洪梅, 卜春尧, 王志华, 周薇, 陈国兴. 回填EPS混合土的防滑悬臂式挡墙地震稳定性分析[J]. 岩土工程学报, 2017, 39(12): 2278-2286. DOI: 10.11779/CJGE201712017
GAO Hong-mei, BU Chun-yao, WANG Zhi-hua, ZHOU Wei, CHEN Guo-xing. Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2278-2286. DOI: 10.11779/CJGE201712017
Citation: GAO Hong-mei, BU Chun-yao, WANG Zhi-hua, ZHOU Wei, CHEN Guo-xing. Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2278-2286. DOI: 10.11779/CJGE201712017

回填EPS混合土的防滑悬臂式挡墙地震稳定性分析  English Version

基金项目: 国家自然科学基金项目(51578286)
详细信息
    作者简介:

    高洪梅(1982- ),女,山东乳山人,博士,副教授,主要从事土动力学与地基处理方面的研究和教学工作。E-mail: hongmei54@163.com。

    通讯作者:

    王志华,E-mail:wzhnjut@163.com

  • 中图分类号: TU43

Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil

  • 摘要: 以一种带防滑齿的“T”型悬臂式挡土墙为对象,采用振动台模型试验揭示了分别回填EPS混合土和天然南京细砂时的挡墙地震稳定性特征。分析并比较了墙-土体系的地震反应以及墙背动土压力分布,重点讨论了试验的防滑悬臂式挡墙位移模式以及回填土性质对墙背动土推力的影响。试验结果表明,回填EPS混合土时,填土地表加速度反应相对更小。回填土的动土推力对墙体转动位移的贡献随激励峰值的增大而增大;墙-土惯性相互作用效应与回填土的动力变形模式密切相关。两种回填料下的墙背动土压力分布形态具有显著差异;砂土-挡墙体系的动土推力与地表峰值加速度间趋向非线性关系,作用点接近2/3墙高。回填EPS混合土时两者更接近线性关系,且动土推力作用点接近1/3墙高。两种体系的动土推力作用点随地表峰值加速度增大均略有下移。基于试验结果与几种经典的解析方法预测结果比较,给出了EPS混合土柔性挡墙抗震分析的几点建议。
    Abstract: Shaking table tests are conducted on the inverted T-shape cantilever retaining walls with an anti-sliding tooth to comparatively study the seismic stability characteristics using EPS composite soil and Nanjing fine sand as backfills, respectively. The seismic responses of wall-soil system and dynamic earth pressure distribution behind the wall are comparatively analyzed. The influences of displacement modes of retaining wall and the properties of backfill on dynamic earth thrust are emphasized. The experimental results indicate that when using EPS composite soil as backfill, the acceleration response on the backfill surface is relatively small. The contribution of dynamic earth thrust to the wall rotation increases with the increasing input peak excitation. The inertial interaction between wall and soil is closely related to the dynamic deformation mode of backfill. The distribution of dynamic earth thrust behind the wall when using sand as backfill is obviously different from that using EPS composite soil. The relationship between the dynamic earth thrust and the peak ground acceleration for sand-wall system is nonlinear, and the acting position of earth thrust is approximately 2/3 wall height. A linear relationship exists for EPS composite soil-wall system, and the acting position is close to 1/3 wall height. The acting position of earth thrust slightly moves down as the peak ground acceleration increases for the two test systems. Based on the comparison between test results and several classical analytic solutions, some suggestions are proposed regarding the seismic analysis of flexible retaining wall when using EPS composite soil as backfill.
  • [1] MIAO L C, WANG F, HAN J, et al. Properties and applications of cement-treated sand-expanded polystyrene bead lightweight fill[J]. Journal of Materials in Civil Engineering, 2013, 25(1): 86-93.
    [2] 李明东, 朱 伟, 马殿光, 等. EPS颗粒混合轻质土的施工技术及其应用实例[J]. 岩土工程学报, 2006, 28(4): 533-536. (LI Ming-dong, ZHU Wei, MA Dian-guang, et al. Construction technology and application in-situ of expanded polystyrene treated lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 533-536. (in Chinese))
    [3] 刘汉龙, 董金梅, 周云东, 等. 聚苯乙烯轻质混合土应力-应变特性分析[J]. 岩土工程学报, 2004, 26(5): 579-583. (LIU Han-long, DONG Jin-mei, ZHOU Yun-dong, et al. Study on the stress-strain characteristics of light heterogeneous soil mixed with expanded polystyrene[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 579-583. (in Chinese))
    [4] 王庶懋, 高玉峰. 砂土与EPS颗粒混合的轻质土的动剪切模量衰减特性分析[J]. 岩土力学, 2007, 28(5): 1001-1005. (WANG Shu-mao, GAO Yu-feng. Study on degradation behavior of dynamic shear modulus for lightweight sand-EPS beads soil[J]. Rock and Soil Mechanics, 2007, 28(5): 1001-1005. (in Chinese))
    [5] GAO H M, CHEN Y M, LIU H L, et al. Creep behavior of EPS composite soil[J]. Science China (Technological Sciences), 2012, 155(11): 3070-3080.
    [6] ATIK A L, SITAR N. Seismic earth pressures on cantilever retaining structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1324-1333.
    [7] GAZETAS G, PSARROPOULOS P, ANASTASOPOLOUS I, et al. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(7): 537-550.
    [8] JO S B, HA J G, YOO M, et al. Seismic behavior of an inverted T-shape flexible retaining wall via dynamic centrifuge tests[J]. Bulliten of Earthquake Engineering, 2014, 12(2): 961-980
    [9] WILSON P. Large scale passive force-displacement and dynamic earth pressure Experiments and Simulations[D]. San Diego: University of California, 2009.
    [10] KOSEKI J, TOTSUOKA F, MUNAF Y, et al. A modified procedure to evaluate active earth pressure at high seismic loads[J]. Soils and Foundations, 1997: 209-216.
    [11] MIKOLA R G, CANDIA G, SITAR N. Seismic earth pressures on retaining structures and basement walls in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 1-9.
    [12] WILSON P, ELGAMAL A. Shake table lateral earth pressure testing with dense c-ϕ backfill[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 13-26.
    [13] MONONOBE N, MATUO H. On determination of earth pressures during earthquakes[C]// Proceedings of the World Engineering Congress. Tokyo, 1929.
    [14] OKABE S. General theory on earth pressure and seismic stability of retaining wall and dam[J]. Journal of Japanese Society of Civil Engineering, 1924, 10(6): 1277-323.
    [15] WOOD J H. Earthquake-induced pressures on rigid wall structure[J].Bulletin of the New Zealand National Society for Earthquake Engineering, 1975, 8(3): 175-186.
    [16] MADABHUSHI S P G, ZENG X. Simulating seismic response of cantilever retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 539-549.
    [17] KONTOE S, ZDRAVKOVIC L, MENKITI C O, et al. Seismic response and interaction of complex soil retaining systems[J]. Computers and Geotechnics, 2012, 39: 17-26.
    [18] 陈国兴, 王志华, 左 熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. (CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese))
    [19] 王志华, 周恩全, 陈国兴, 等. 循环荷载下饱和砂土固-液相变特征[J]. 岩土工程学报, 2012, 34(9): 1604-1610. (WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, et al. Characteristics of solid-liquid phase change of saturated sands under cyclic loads[J].Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610. (in Chinese))
    [20] CHEN G X, CHEN S, QI C Z, et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1675-1701.
    [21] Canadian Geotechnical Society. Canadian foundation engineering manual, Third Edition[S]. 1992.
    [22] RICHARDS R, HUANG C, FISHMAN K. Seismic earth pressure on retaining structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 771-778.
    [23] VELETSOS A S, YOUNAN A H. Dynamic response of cantilever retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 161-172.
    [24] SEED H B, WHITMAN R V. Design of earth retaining structures for dynamic loads[C]// Proceedings of the ASCE Specialty Conference on Lateral Stresses in the Ground and the Design of Earth Retaining Structures. New York, 1970.
    [25] National Cooperative Highway Research Program. Manuals for Design of Bridge Foundations[S]. 1991.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回