Large triaxial compression tests on geosynthetic-encased granular columns
-
摘要: 对密实状态的土工织物散体桩桩体进行大三轴试验,研究其在不同围压和不同聚丙烯土工编织布筋材强度下的应力-应变特性,并据此提出桩体强度及模量理论计算公式。研究结果表明:土工织物散体桩桩体在三轴压缩下呈剪胀破坏,其剪切带上主要是筋材的横向筋丝产生断裂,且桩体剪切角与碎石的莫尔-库仑理论破裂角比较接近;在加载初期,土工织物散体桩应力-应变曲线下凹,而后近似线性增长至峰值应力,随后应力随应变减小并趋于稳定,表现为应变软化特性;同一筋材强度、不同围压的土工织物散体桩桩体强度所对应的轴向应变值比较接近;土工织物散体桩桩体的似黏聚力随筋材强度呈较好的线性增长关系,其较碎石的似黏聚力大很多,而筋材对桩体碎石的内摩擦角影响不大;建立了土工织物散体桩桩体强度及模量的理论计算公式,并采用试验值对理论公式进行修正,经修正后的结果与试验值吻合很好。Abstract: Large triaxial compression tests are performed on geosynthetic-encased granular columns (GEGC) with gravels in dense state. The stress-strain characteristics of GEGC with different strengths of polypropylene woven geotextiles and different confining pressures are investigated. The theoretical formulas to compute the strength and modulus of GEGC are then proposed. The results show that the GEGC exhibits dilative shear failure under triaxial compression, and mainly the horizontal textile slices at the shear band break. The shear angle is close to the rupture angle of the Mohr-Coulomb strength theory. The stress-strain curve of GEGC at the preliminary loading stage is concave down, then its stress approximately increases linearly up to a peak stress, and subsequently decreases to a stable value, showing strain softening characteristics. The axial strains corresponding to the strengths of GEGC with the same reinforcement strength under different confining pressures are even close. The quasi-cohesion of the GEGC has a good linear relationship with the strength of reinforcements, and it is much larger than that of the gravels, but the strength of reinforcements has little effect on the internal friction angle of the gravels of GEGC. Theoretical formulas are established to compute the strength and modulus of the GEGC. The formulas are verified through the test data, and the correction factors for the formulas are obtained. The results of the modified formulas agree well with the test ones.
-
[1] RAITHEL M, KÜSTER V, LINDMARK A. Geotextile encased columns, a foundation system for earth structures, illustrated by a dyke project for a works extension in hamburg[C]// Nordic Geotechnical Meeting NGM 2004. Ystad, 2004: 1-10. [2] 陈建峰, 王 波, 魏 静, 等. 加筋碎石桩复合地基路堤模型试验研究[J]. 中国公路学报, 2015, 28(9): 1-8. (CHEN Jian-feng, WANG Bo, WEI Jing, et al. Model tests of embankments on soft foundation reinforced with geosynthetic-encased stone columns[J]. China Journal of Highway and Transport, 2015, 28(9): 1-8. (in Chinese)) [3] RAJAGOPAL K, KRISHNASWAMY N R, LATHA G M. Behaviour of sand confined with single and multiple geocells[J]. Geotextiles and Geomembranes, 1999, 17(3): 171-184. [4] WU C S, HONG Y S. Laboratory tests on geosynthetic- encapsulated sand columns[J]. Geotextiles and Geomembranes, 2009, 27(2): 107-120. [5] MIRANDA M, COSTA A D. Laboratory analysis of encased stone columns[J]. Geotextiles and Geomembranes, 2016, 44: 269-277. [6] JTG E40—2007 公路土工试验规程[S]. 2007. (JTG E40—2007 Test methods of soils for highway engineering[S]. 2007. (in Chinese)) [7] JGJ 79—2012 建筑地基处理技术规范[S]. 2013. (JGJ 79—2012 Technical code for ground treatment of buildings[S]. 2013. (in Chinese)) [8] 甘 霖, 袁光国. 大型高压三轴试验测试及粗粒土的强度特性[J]. 大坝观测与土工测试, 1997, 21(3): 9-12. (GAN Lin, YUAN Guang-guo. Large high pressure triaxial test and strength properties of coarse-grained soil[J]. Dam Observation and Geotechnical Tests, 1997, 21(3): 9-12. (in Chinese)) [9] 阮龙飞, 王永庆. 中远船务启东海工基地坞口围堰工程的设计与施工[J]. 水利水电科技进展, 2009, 29(6): 90-94. (RUAN Long-fei, WANG Yong-qing. Design and construction of dock-gate cofferdam of cosco Qidong marine base[J]. Advances in Science and Technology of Water Resources, 2009, 29(6): 90-94. (in Chinese)) [10] 李传旦. 加筋系袋式软体排在界牌水道整治工程中的应用[J]. 水运工程, 1995(11): 32-35. (LI Chuan-dan. Application of mattress with reiforced strip and tied sand bag in Jiepai waterway regulation works[J]. Port & Waterway Engineering, 1995(11): 32-35. (in Chinese)) [11] 杨艳燕, 黄 婧. 应用不同缝纫方法的土工织物接缝强度比较研究[J]. 科技创业月刊, 2007, 20(6): 176-177. (YANG Yan-qing, HUANG Jing. Comparison of the strength applied different seaming methods in geotextile[J]. Pioneering with Science & Technology Monthly, 2007, 20(6): 176-177. (in Chinese)) [12] 陆士强. 土工合成材料应用原理[M]. 北京: 水利水电出版社, 1994: 1-21. (LU Shi-qiang. Application principles of geosynthetic materials[M]. Beijing: China Water Power Press, 1994: 1-21. (in Chinese)) [13] 秦尚林, 陈善雄, 韩 卓, 等. 巨粒土大型三轴试验研究[J].岩土力学, 2010, 31(增刊2): 189-193. (QIN Shang-lin, CHEN Shan-xiong, HAN Zhuo, et al. Large-scale triaxial test study of behavior of over coarse-grained soils[J]. Rock and Soil Mechanics, 2010, 31(S2): 189-193. (in Chinese)) -
期刊类型引用(11)
1. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 . 百度学术
2. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 . 百度学术
3. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 . 百度学术
4. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 . 百度学术
5. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 . 百度学术
6. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 . 百度学术
7. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 . 百度学术
8. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 . 百度学术
9. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 . 百度学术
10. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 . 百度学术
11. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术
其他类型引用(1)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 12