• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

烧碱激发钢渣粉在淤泥质土中的试验研究

吴燕开, 胡晓士, 胡锐, 石玉斌, 韩天, 于佳丽

吴燕开, 胡晓士, 胡锐, 石玉斌, 韩天, 于佳丽. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. DOI: 10.11779/CJGE201712006
引用本文: 吴燕开, 胡晓士, 胡锐, 石玉斌, 韩天, 于佳丽. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. DOI: 10.11779/CJGE201712006
WU Yan-kai, HU Xiao-shi, HU Rui, SHI Yu-bin, HAN Tian, YU Jia-li. Experimental study on caustic soda-activated steel slag powder in muddy soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194. DOI: 10.11779/CJGE201712006
Citation: WU Yan-kai, HU Xiao-shi, HU Rui, SHI Yu-bin, HAN Tian, YU Jia-li. Experimental study on caustic soda-activated steel slag powder in muddy soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194. DOI: 10.11779/CJGE201712006

烧碱激发钢渣粉在淤泥质土中的试验研究  English Version

基金项目: 国家自然科学基金项目(41372288); 山东科技大学科研创新团队支持项目(2015KYDT104)
详细信息
    作者简介:

    吴燕开(1976- ),男,副教授,博士,主要从事地下工程支护、软基处理等方面的研究。E-mail: wuyankai2000@163.com。

  • 中图分类号: TU43

Experimental study on caustic soda-activated steel slag powder in muddy soil

  • 摘要: 钢渣粉是炼钢生产后排出的工业废渣经球磨后形成的一种粉末状产物,与水泥有着相似的性质,但活性较差,需对其进行激发处理。将烧碱(NaOH)作为钢渣粉的激发剂,研究在不同烧碱掺入量下,钢渣粉与水泥混合后对淤泥质土的固化效果。试验结果表明:未掺烧碱的钢渣-水泥固化土早期强度低,后期固化效果较好;掺入烧碱之后,在其激发作用下,钢渣粉的固化效果良好且可使固化土早强。钢渣-水泥固化土的无侧限抗压强度随着烧碱掺量的增加而出现先增大后减小的变化。对胶凝材料进行X射线衍射(XRD)分析,发现材料中有单硫型硫铝酸钙(AFm)物质生成,该物质可提高固化土的强度。
    Abstract: The steel slag powder is a powdery product formed by ball milling after the industrial waste is discharged from steelmaking. It has similar properties to those of cement, but its activity is poor and it needs to be treated. Through the laboratory tests, caustic soda (NaOH) is used as the activator of the steel slag powder to study the effect of the slag powder and cement mixed on the silty soil under different caustic soda contents. The results show that the early strength of the steel slag-cement solidified soil is low, and the curing effect is better at the later stage. After the caustic soda is added, the curing effect of the steel slag powder is obvious. The unconfined compressive strength of the steel slag-cement solidified soil increases first and then decreases with the increase of activator dosage. The X-ray diffraction (XRD) analysis shows that there is a monosulfated calcium sulphoaluminate (AFm) in the mixture, which can enhance the strength of the solidified soil.
  • [1] 易耀林, 李 晨, 孙 川, 等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1821-1826. (YI Yao-lin, LI Chen, SUN Chuan, et al. Test on alkali-activated ground granulated blast-furnace slag (GGBS) for lianyungang soft soil stabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1821-1826. (in Chinese))
    [2] 杨爱武, 闫澍旺, 杜东菊, 等. 碱性环境对固化天津海积软土强度影响的试验研究[J]. 岩土力学, 2010, 31(9): 2930-2934. (YANG Ai-wu, YAN Shu-wang, DU Dong-ju, et al. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. Rock and Soil Mechanics, 2010, 31(9): 2930-2934. (in Chinese))
    [3] 李义凯, 刘福田, 周宗辉, 等. 复合激发剂活化钢渣制备复合胶凝材料研究[J]. 武汉理工大学学报, 2009, 31(4): 11-13. (LIU Yi-kai, LIU Fu-tian, ZHOU Zong-hui, et al. Study of improving the activity of steel slag powder using compound activator[J]. Journal of Wuhan University of Technology, 2009, 31(4) :11-13. (in Chinese))
    [4] 张同生, 刘福田, 王建伟, 等. 钢渣安定性与活性激发的研究进展[J]. 硅酸盐通报, 2007, 26(5): 980-984. (ZHANG Tong-sheng, NIU Fu-tian, ZHOU Zong-hui, et al. Recent development of steel slag stability and activating activity [J]. Bulletin of the Chinese Ceramic Society, 2007, 26(5): 980-984. (in Chinese))
    [5] 赵 鸿.钢渣细度和掺量对钢渣复合水泥力学性能的影响[J]. 中国粉体技术, 2012, 18(3): 4-6. (ZHAO Hong. Influence of steel slag fineness and mixture amount on composite cement containing steel slag powders[J]. China Powder Science and Technology, 2012, 18(3): 4-6. (in Chinese))
    [6] FATHOLLAH Sajedi, HASHIN Abudul Razak. The effect of chemical activators on early strength of oxlinand Portland cement-slag mortars[J]. Construction and Building Materials 2010, 24: 1944-1951.
    [7] 李玉祥, 王振兴, 冯 敏, 等. 不同激发剂对钢渣活性影响的研究[J]. 硅酸盐通报, 2012, 31(2): 280-284. (LI Yu-xiang, WANG Zhen-xing, FENG Min, et al. Study on the effect of different activators on activation of steel slag[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(2): 280-284. (in Chinese))
    [8] 王 强, 黎梦圆, 石梦晓. 水泥-钢渣-矿渣复合胶凝材料的水化特性[J]. 硅酸盐学报, 2014, 42(5): 629-634. (WANG Qiang, LI Meng-yuan, SHI Meng-xiao. Hydration properties of cement-steel-ground granulated blasé furnace Slag complex binder[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 629-634. (in Chinese))
    [9] 殷素红, 高 凡, 郭 辉, 等. 石灰重构钢渣过程中的物相变化[J]. 华南理工大学学报(自然科学版), 2016, 42(6): 47-52. (YIN Su-hong, GAO Fan, GUO Hui, et al. Phase change of steel slag during reconstruction by line[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 42(6): 47-52. (in Chinese))
    [10] LIU Qian, LIU Jia-xiang, QI Li-qian. Effects of temperature and carbonation curing on the mechanical properties of steel slag-cement binding materials[J]. Construction and Building Materials, 2016, 124: 999-1006.
    [11] NIKLIOĆ S, MARKOVIĆ I, JANKOVIĆ-Častvan. Modification of mechanical and thermal properties of fly ash-based geopolymer by the incorporation of steel slag [J]. Materials Letters, 2016, 176: 301-305.
    [12] MASON B. The constitution of some basic open-hearth slags[J]. J Iron Steel Inst, 1994(11): 69-80.
    [13] HU S G, WANG H X, ZHANG G Z, et al. Bonding and abrasion resistance of geopolymeric repair material made with steel slag[J]. Cement and Concrete Composites, 2008, 30(3): 239-244.
    [14] DAS B, PRAKASH S, REDDY P S R, et al. An overview of utilization of slag and sludge from steel industries[J]. Resources, Conservation and Recycling, 2007, 50(1): 40-57.
    [15] TSAKIRIDIS P E, PAPADIMITRIOU G D, TSIVLIS S, et al. Utilization of steel slag for Portland cement clinker production[J]. Journal of Hazardous Materials, 2008, 152(2): 805-811.
    [16] COALE R D. Cementitious properties of metallurgical slags[J]. Cement and Concrete Research, 1973(3): 81-92.
    [17] WU Yan-kai, HU Rui, HU Xiao-shi, et al. Mechanical properties of mucky cement soil improved by steel slag powder[J]. Electronic Journal of Geotechnical Engineering, 2016, 21: 10651-10664.
    [18] WANG Qiang, YAN Pei yu, HAN Song. Effect of steel slag on hydration of cement in hydration of composite cementitious material[J]. Chinese Science (Technical Sciences), 2011, 41(2): 170-176.
    [19] 王 强. 钢渣的胶凝性能及在复合胶凝材料水化硬化过程中的作用[D]. 北京: 清华大学, 2010. (WANG Qiang. Cementitious properties of steel slag and its role in the hydration and hardening process of complex binder[D]. Beijing: Tsinghua University, 2010. (in Chinese))
    [20] TAKEMOTO K, UCHIKAWA H. Hydration of pozzolanic cement[C]// The 7th International Congress on the Chemistry of Cement. Paris, 1980.
    [21] 涂 昆, 刘家祥, 邓 侃. 钢渣粉和钢渣水泥的活性及水化机理研究[J]. 北京化工大学学报(自然科学版), 2015, 41(1): 62-68. (TU Kun, LIU Jia-xiang, DENG Kan. Study of the hydration behavior of steel slag and steel slag cement complex powders[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2015, 41(1): 62-68. (in Chinese))
  • 期刊类型引用(22)

    1. 谢朋,李葱葱,段虎辰,文海家,李良勇,李昭捷,王永卫. 隧道围岩透明相似材料强度特征与配合比研究. 湖南大学学报(自然科学版). 2025(01): 219-227 . 百度学术
    2. 钱伟丰,黄明,曾子圣,王禹,胡艳峰. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报. 2025(01): 273-288 . 百度学术
    3. 应宏伟,吕忠泽. 考虑刀土摩擦的砂土盾构隧道开挖面支护压力计算方法. 中南大学学报(自然科学版). 2024(03): 1082-1091 . 百度学术
    4. 夏俊偉. 砂卵石地层中地铁盾构隧道开挖面稳定性离散元数值模拟研究. 铁道勘察. 2024(02): 140-146 . 百度学术
    5. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 . 百度学术
    6. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 . 百度学术
    7. 刘功明,黄建坤,杜金阳,张健. 适用于植物生长的透明土制备及其性能试验. 农业工程学报. 2024(15): 76-84 . 百度学术
    8. 何晟亚,李亮,李恒一,张建经,叶亮,文海家,段虎辰,谢朋. 可视化软土隧道模型试验相似材料的配置及其物理力学特性研究. 现代隧道技术. 2024(04): 202-209 . 百度学术
    9. 刘维正,师嘉文,谭际鸣,董军,豆小天. 水位变化下浅埋盾构隧道开挖面渗透力与稳定性研究. 中南大学学报(自然科学版). 2024(10): 3833-3848 . 百度学术
    10. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 . 百度学术
    11. 卜璟,王琛. 基于透明土试验技术的盾构侧穿桩基影响机制研究. 江苏建筑. 2023(02): 67-72 . 百度学术
    12. 雷华阳,刘敏,钟海晨,许英刚,袁大军. 黏土地层盾构隧道开挖面失稳离心试验及数值模拟. 天津大学学报(自然科学与工程技术版). 2023(05): 503-512 . 百度学术
    13. 苏占东,周思哲,王成虎,孙进忠,曾扬农,张建勇,张明磊,王磊,朱卓辉,李小瑞. 工程岩体物理模拟研究中实验材料的选择与应用. 地质论评. 2023(03): 1133-1149 . 百度学术
    14. 谢丽辉,丁军军. 上软下硬地层盾构隧道开挖面稳定性数值模拟研究. 城市道桥与防洪. 2023(05): 195-199+24-25 . 百度学术
    15. 李同海. 考虑断层边界影响的盾构掘进安全距离界定方法. 福建交通科技. 2023(04): 60-64 . 百度学术
    16. 汪联欢. 消力池开挖施工对临近泄洪洞安全性的影响. 水利科学与寒区工程. 2023(11): 133-137 . 百度学术
    17. 雷华阳,刘敏,程泽宇,钟海晨. 透明黏土盾构隧道开挖面失稳扩展过程和失稳特征研究. 岩石力学与工程学报. 2022(06): 1235-1245 . 百度学术
    18. 王均山,衣凡,连文博,张建铭,何志伟,谢育杨,仲志武,程雪松. 软土地区地铁盾构隧道引发地表沉陷实例研究. 建筑结构. 2022(S1): 2871-2877 . 百度学术
    19. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 . 百度学术
    20. 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述. 隧道与地下工程灾害防治. 2022(03): 31-46 . 百度学术
    21. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    22. 刘朝钦. 软弱地层超大矩形顶管盾构隧道开挖面稳定性研究. 高速铁路技术. 2022(06): 36-40 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 45
出版历程
  • 收稿日期:  2017-02-06
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回