• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深部岩体隧洞即时型岩爆微震震源体积的分形特征研究

于洋, 冯夏庭, 陈炳瑞, 肖亚勋, 丰光亮

于洋, 冯夏庭, 陈炳瑞, 肖亚勋, 丰光亮. 深部岩体隧洞即时型岩爆微震震源体积的分形特征研究[J]. 岩土工程学报, 2017, 39(12): 2173-2179. DOI: 10.11779/CJGE201712004
引用本文: 于洋, 冯夏庭, 陈炳瑞, 肖亚勋, 丰光亮. 深部岩体隧洞即时型岩爆微震震源体积的分形特征研究[J]. 岩土工程学报, 2017, 39(12): 2173-2179. DOI: 10.11779/CJGE201712004
YU Yang, FENG Xia-ting, CHEN Bing-rui, XIAO Ya-xun, FENG Guang-liang. Fractal characteristics of micro-seismic volume for different types of immediate rock-bursts in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2173-2179. DOI: 10.11779/CJGE201712004
Citation: YU Yang, FENG Xia-ting, CHEN Bing-rui, XIAO Ya-xun, FENG Guang-liang. Fractal characteristics of micro-seismic volume for different types of immediate rock-bursts in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2173-2179. DOI: 10.11779/CJGE201712004

深部岩体隧洞即时型岩爆微震震源体积的分形特征研究  English Version

基金项目: 国家自然科学基金项目(51509092); 江西省自然科学基金项目(20161BAB216141,2016BAB206159); 江西省教育厅科研项目(150518); 岩土力学与工程国家重点实验室开放基金项目(Z015004)
详细信息
    作者简介:

    于 洋(1982- ),男,博士,主要从事深部岩体力学方面的研究工作。E-mail: lukeryuyang@163.com。

  • 中图分类号: TU45

Fractal characteristics of micro-seismic volume for different types of immediate rock-bursts in deep tunnels

  • 摘要: 根据即时型岩爆孕育及发生过程中微震信息的自相似性,提出了一种震源体积的分形计算方法。运用上述方法,基于锦屏二级水电站施工排水洞及4条引水隧洞施工过程中的大量不同类型、等级的即时型岩爆案例,展开微震事件震源体积分布的分形行为研究。研究结果表明:即时型岩爆孕育及发生过程中的微震信息震源体积分布是具有分形结构的;即时性应变型岩爆体积分形维数大于0.7,即时性应变-结构面滑移型岩爆体积分形维数小于0.6,这意味着根据微震事件体积分形维数可以对即时性岩爆的类型进行区分;对于即时型岩爆来说,岩爆等级越强则微震体积分形维数值越大;对于即时性应变-结构面滑移型岩爆,结构面数越多则震源体积分形维数值越小。上述研究结果可以为高地应力条件下不同类型岩爆的预测与防治提供合理的科学依据。
    Abstract: A fractal method is put forward to study the self-similarity of the volume distribution of micro-seismic events during the development of different types of immediate rock-bursts. The proposed method is used to study the fractal behaviours of the volume distribution of micro-seismic events during the development of immediate rock-bursts that occur in four deep headrace tunnels and one drainage tunnel at the Jinping II Hydropower Station. The results indicate that the volume distribution of micro-seismic events during the evolution of immediate rock-bursts displays fractal properties. The fractal dimension of volume can be used as the basis for estimating rock-burst type, that is, the fractal dimensions of immediate strain rock-bursts are >0.7 and <1, but those of immediate strain-structure slip rock-bursts are >0.2 and <0.6. For the immediate strain rock-bursts and the immediate strain-structure slip rock-bursts, if the intensity is lower, the fractal dimensions of volume will be smaller. For the immediate strain-structure slip rock-bursts, the more the number of structure planes, the smaller the fractal dimensions of volume. These conclusions can be used as the guideline to develop a warning system and to reduce the risk of rock-bursts during construction of deep, hard-rock tunnels.
  • [1] 冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013. (FENG Xia-ting, CHEN Bing-rui, ZHANG Chuan-qing, et al. Mechanism warning and dynamic control of rock-burst development processes[M]. Beijing: China Social Sciences Publishing House, 2013. (in Chinese))
    [2] MENDECKI A J. Real time quantitative seismology in mines[M]// Rock-bursts and Seismicity in Mines. Rotterdam: Balkema, 1993: 287-295.
    [3] MENDECKI A J. Principles of monitoring seismic rockmass response to mining[C]// Rock-bursts and Seismicity in Mines. Balkema, 1997: 69-79.
    [4] 陈炳瑞, 冯夏庭, 曾雄辉, 等. 深埋隧洞TBM掘进微震实时监测与特征分析[J]. 岩石力学与工程学报, 2011, 30(2): 275-283. (CHEN Bing-rui, FENG Xia-ting, ZENG Xiong-hui, et al. Real-time micro-seismic monitoring and its characteristic analysis during TBM tunneling in deepburied tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 275-283. (in Chinese))
    [5] MANDELBROT B B. The Fractal geometry of nature[M]. London: W H Freeman and Company, 1982.
    [6] KAGAN Y Y, KNOPOFF. Stochastic synthesis of earthquake catalogs[J]. Geophys Royal Economic Society, 1981, 86(B4): 2853-2862.
    [7] KAGAN Y Y, KNOPOFF. Statistical study of the occurrence of shallow earthquakes[J]. Geophys Royal Economic Society, 1978, 55(1): 67-86.
    [8] FENG X T, STEO M. A new method of modeling the rock-microfracturing process in double torsion experiments using neural networks[J]. International Journal of Analytic and Numerical Methods in Geomechanics, 1999, 23(4): 905-923.
    [9] FORD A, BLENKINSOP T G. Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia[J]. Ore Geology Reviews, 2008. 33: 435-450.
    [10] HIRATA T, SATOH T, ITO K. Fractal structure of spatial distribution microfracturing in rock[J]. Geophys J R astr Soc, 1987, 90: 367-374.
    [11] KATSUMATA K. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake ( M =9.0)[J]. Earth Planets Space, 2011, 63: 709-712.
    [12] SETO M, NISHIZAWA O, KATSUYAMA K. The variation of hypocenter distribution of AE events in coal under triaxial compression[J]. Acoust Em, 1994, 11: 27-36.
    [13] MANDAL P, RODKIN M V. Seismic imaging of the 2001 Bhuj Mw7.7 earthquake source zone: b-value, fractal dimension and seismic velocity tomography studies[J]. Tectonophysics, 2011, 512: 1-11.
    [14] CAI M. Influence of stress path on tunnel excavation response-numerical tool selection and modeling strategy[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 618-628.
    [15] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J]. 岩石力学与工程学报, 2012, 10(3): 447-451. (FENG Xia-ting, CHEN Bing-rui, MING Hua-jun, et al. Evolution law and mechanism of rock-bursts in deep tunnels: immediate rock-burst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 10(3): 447-451. (in Chinese))
    [16] 陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. (CHEN Bing-rui, FENG Xia-ting, MING Hua-Jun, et al. Evolution law and mechanism of rock-bursts in deep tunnels: time delayed rock-burst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 311(3): 561-569. (in Chinese))
    [17] 江 权, 冯夏庭, 周 辉. 锦屏二级水电站深埋引水隧洞群允许最小间距研究[J]. 岩土力学, 2008, 29(3): 656-662. (JIANG Quan, FENG Xia-ting, ZHOU Hui. Study on acceptable minimum interval of long deep-buried hydropower tunnels in Jinping hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 29(3): 656-662. (in Chinese))
    [18] TANG Y. A new classification of rock-burst intensity[J]. Geol Rev, 1992, 38(5): 439-443.
    [19] WANG L S, LI T B, XU J, et al. Study on rock-burst and its intensity classifies in the tunnel of Erlang Mountain road[J]. Road, 1999, 2: 41-45.
    [20] AKI K. Estimation of earthquake moment, released energy, and stress strain drop from the G-wave spectrum[J]. Bulletin of Earthquake Research Institute, 1966, 44(12): 73-88.
  • 期刊类型引用(22)

    1. 谢朋,李葱葱,段虎辰,文海家,李良勇,李昭捷,王永卫. 隧道围岩透明相似材料强度特征与配合比研究. 湖南大学学报(自然科学版). 2025(01): 219-227 . 百度学术
    2. 钱伟丰,黄明,曾子圣,王禹,胡艳峰. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报. 2025(01): 273-288 . 百度学术
    3. 应宏伟,吕忠泽. 考虑刀土摩擦的砂土盾构隧道开挖面支护压力计算方法. 中南大学学报(自然科学版). 2024(03): 1082-1091 . 百度学术
    4. 夏俊偉. 砂卵石地层中地铁盾构隧道开挖面稳定性离散元数值模拟研究. 铁道勘察. 2024(02): 140-146 . 百度学术
    5. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 . 百度学术
    6. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 . 百度学术
    7. 刘功明,黄建坤,杜金阳,张健. 适用于植物生长的透明土制备及其性能试验. 农业工程学报. 2024(15): 76-84 . 百度学术
    8. 何晟亚,李亮,李恒一,张建经,叶亮,文海家,段虎辰,谢朋. 可视化软土隧道模型试验相似材料的配置及其物理力学特性研究. 现代隧道技术. 2024(04): 202-209 . 百度学术
    9. 刘维正,师嘉文,谭际鸣,董军,豆小天. 水位变化下浅埋盾构隧道开挖面渗透力与稳定性研究. 中南大学学报(自然科学版). 2024(10): 3833-3848 . 百度学术
    10. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 . 百度学术
    11. 卜璟,王琛. 基于透明土试验技术的盾构侧穿桩基影响机制研究. 江苏建筑. 2023(02): 67-72 . 百度学术
    12. 雷华阳,刘敏,钟海晨,许英刚,袁大军. 黏土地层盾构隧道开挖面失稳离心试验及数值模拟. 天津大学学报(自然科学与工程技术版). 2023(05): 503-512 . 百度学术
    13. 苏占东,周思哲,王成虎,孙进忠,曾扬农,张建勇,张明磊,王磊,朱卓辉,李小瑞. 工程岩体物理模拟研究中实验材料的选择与应用. 地质论评. 2023(03): 1133-1149 . 百度学术
    14. 谢丽辉,丁军军. 上软下硬地层盾构隧道开挖面稳定性数值模拟研究. 城市道桥与防洪. 2023(05): 195-199+24-25 . 百度学术
    15. 李同海. 考虑断层边界影响的盾构掘进安全距离界定方法. 福建交通科技. 2023(04): 60-64 . 百度学术
    16. 汪联欢. 消力池开挖施工对临近泄洪洞安全性的影响. 水利科学与寒区工程. 2023(11): 133-137 . 百度学术
    17. 雷华阳,刘敏,程泽宇,钟海晨. 透明黏土盾构隧道开挖面失稳扩展过程和失稳特征研究. 岩石力学与工程学报. 2022(06): 1235-1245 . 百度学术
    18. 王均山,衣凡,连文博,张建铭,何志伟,谢育杨,仲志武,程雪松. 软土地区地铁盾构隧道引发地表沉陷实例研究. 建筑结构. 2022(S1): 2871-2877 . 百度学术
    19. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 . 百度学术
    20. 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述. 隧道与地下工程灾害防治. 2022(03): 31-46 . 百度学术
    21. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    22. 刘朝钦. 软弱地层超大矩形顶管盾构隧道开挖面稳定性研究. 高速铁路技术. 2022(06): 36-40 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 45
出版历程
  • 收稿日期:  2016-09-13
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回