• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深埋隧洞TBM掘进微震与岩爆活动规律研究

赵周能, 冯夏庭, 陈炳瑞

赵周能, 冯夏庭, 陈炳瑞. 深埋隧洞TBM掘进微震与岩爆活动规律研究[J]. 岩土工程学报, 2017, 39(7): 1206-1215. DOI: 10.11779/CJGE201707006
引用本文: 赵周能, 冯夏庭, 陈炳瑞. 深埋隧洞TBM掘进微震与岩爆活动规律研究[J]. 岩土工程学报, 2017, 39(7): 1206-1215. DOI: 10.11779/CJGE201707006
ZHAO Zhou-neng, FENG Xia-ting, CHEN Bin-rui. Activity laws of microseisms and rockbursts in deep tunnels by TBM tunneling[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1206-1215. DOI: 10.11779/CJGE201707006
Citation: ZHAO Zhou-neng, FENG Xia-ting, CHEN Bin-rui. Activity laws of microseisms and rockbursts in deep tunnels by TBM tunneling[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1206-1215. DOI: 10.11779/CJGE201707006

深埋隧洞TBM掘进微震与岩爆活动规律研究  English Version

基金项目: 国家自然科学基金国际合作重大项目(41320104005); 国家自然科学基金项目(51479192); 西南科技大学博士研究基金项目(14zx7106)
详细信息
    作者简介:

    赵周能(1976- ),男,讲师,博士,主要从事采矿及深部岩石力学方面的研究工作。E-mail: zhzhneng@163.com。

Activity laws of microseisms and rockbursts in deep tunnels by TBM tunneling

  • 摘要: 以锦屏二级水电站TBM开挖的深埋隧洞为工程背景,基于微震监测数据和岩爆实例,研究了深埋隧洞TBM掘进过程中微震与岩爆时空分布特征及岩爆孕育过程微震演化规律。结果表明:①微震活跃期和岩爆高发期处于TBM作业时段及停机后的1 h以内;微震活动范围主要介于掌子面后方3倍洞径至前方0.4倍洞径之间,其峰值位于掌子面后方0.8倍洞径附近;而岩爆主要发生在掌子面后方2倍洞径以内,尤其是掌子面后方1倍洞径以内是岩爆高发区;可见,微震与岩爆具有良好的时空相关性。②在时间序列上,微震能突增现象,以及累积视体积快速上升而Schmidt数急剧下降的现象均属微震活动异常,属岩爆前兆。③在空间序列上,微震事件逐渐向某个区域高度集结且大震级高能量事件不断增多的现象属微震活动异常,预示高岩爆风险,属岩爆前兆。
    Abstract: For the deep tunnel of JinpingⅡ Hydropower Station excavated by TBM, based on the seismic monitoring data and rockbursts, the temporal and spatial distribution characteristics of microseismic events and rockbursts and evolution laws of microseismicity information during the preparation process of rockbursts are studied. The conclusions are drawn as follows: (1) The active period of microseisms and the peak period of rockbursts are the working time and within one hour after stopping working for TBM. The microseismic activity mainly ranges from 3 times the tunnel diameter behind working face to 0.4 times ahead, and its peak value is located at 0.8 times the tunnel diameter behind working face. The rockbursts mainly occur within the region 2 times the tunnel diameter behind working face, especially the high-risk zone of rockbursts lies in the region as large as 1 times the tunnel diameter behind working face. Therefore, there is certain space-time relativity between the microseisms and the rockbursts. (2) A sudden increase of microseismic released energy or the steep rise of cumulated apparent volume (CAV) with a sharp drop of Schmidt number in the time sequence is an microseismic anomaly, which is a premonition of rockbursts. (3) The spatial distribution pattern of mircroseismic events shows a transformation from random to clump distribution in certain zone with time, and the degree of their clump dispersion pattern gradually increases, simultaneously accompanied by a growing number of microseismic events with large magnitude and high energy, that is, it is an microseismic anomaly and also a premonition of rockbursts.
  • [1] 徐林生, 王兰生, 李天斌, 等. 二郎山公路隧道岩爆特征预测研究[J]. 地质灾害与环境保护, 1999(2): 55-59. (XU Lin-sheng, WANG Lan-sheng, LI Tian-bin, et al. Study on the character of rockburst and its forecasting in the Erlang Mountain tunnel[J]. Journal of Geological Hazards and Environment Preservation,1999(2): 55-59. (in Chinese))
    [2] WHITTAKER B N, SINGH R N, SUN G. Rock fracture mechanics: principles, design, and applications[M]. Elsevier, 1992.
    [3] 赵周能, 冯夏庭, 肖亚勋, 等. 不同开挖方式下深埋隧洞微震特性与岩爆风险分析[J]. 岩土工程学报, 2016, 38(5): 867-876. (ZHAO Zhou-neng, FENG Xia-ting, XIAO Ya-xun, et al. Analysis of microseismic features and rockburst risk of deep tunnel constructed with different excavation method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 867-876. (in Chinese))
    [4] 司军平, 高洪涛, 刘正雄. 对秦岭隧道Ⅱ线平导进口端岩爆的几点认识[J]. 世界隧道, 1998(2): 57-60. (SI Jun-ping, GAO Hong-tao, LIU Zheng-xiong. Review on the construction of long single-track tunnel with tyre transportation[J]. Tunnelling and Underground Works, 1998(2): 57-60. (in Chinese))
    [5] 李春杰, 李洪奇. 秦岭隧道岩爆特征与施工处理[J]. 世界隧道, 1999, 16(1): 36-41. (LI Chun-jie, LI Hong-qi. Rockburst characteristics and treatment methods in Qinling tunnel[J]. Tunnelling and Underground Works, 1999, 16(1): 36-41. (in Chinese))
    [6] 李 春. 秦岭I线隧道TBM施工初始阶段的体会和认识[J]. 世界隧道, 1998(4): 15-17. (LI Chun. Experience and cognition on TBM construction of Qinling tunnel line I [J]. Tunnelling and Underground Works, 1998(4): 15-17. (in Chinese))
    [7] RUDAJEV V, SÍLENY J. Seismic events with non-shear component: Ⅱ rock bursts with implosive source component[J]. Pure and Applied Geophysics, 1985, 123(1): 17-25.
    [8] 张志强, 关宝树. 岩爆发生条件的基本分析[J]. 铁道学报, 1998, 20(4): 82-85. (ZHANG Zhi-qiang, GUAN Bao-shu. Basic analysis of rock bursting occurrence condition[J]. Journal of the China Railway Society, 1999, 20(4): 82-85. (in Chinese))
    [9] 王彦辉, 东兆星. 隧道施工中岩爆的成因及预防研究[J]. 河北交通科技, 2010, 7(2): 27-29. (WANG Yan-hui, DONG Zhao-xing. Study on rock burst mechanism and prevention in tunnel[J]. Hebei Jiaotong Science and Technology, 2010, 7(2): 27-29. (in Chinese))
    [10] 刘丽萍, 谢 冰. 钻爆法与全断面掘进机修建地下隧洞的比较[J]. 山西水利科技, 2000(4): 1-5. (LIU Li-ping, XIE Bing. Comparison on the “Drill Blast" method and the TBM method[J]. Shanxi Hydro Technics, 2000(4): 1-5. (in Chinese))
    [11] 侯 靖, 张春生, 单治钢. 锦屏Ⅱ级水电站深埋引水隧洞岩爆特征及防治措施[J]. 地下空间与工程学报. 2011, 7(6): 1251-1257. (HOU Jing, ZHANG Chun-sheng, SHAN Zhi-gang. Rockburst characteristics and the control measures in the deep diversion tunnel of Jinping II hydropower station[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1251-1257. (in Chinese))
    [12] 丁 宇. 锦屏二级水电站引水隧道 TBM(隧道掘进机)施工岩爆综合预测研究[D]. 北京: 北京工业大学, 2012. (DING Yu. Study on rockbursts prediction of TBM construction at headrace tunnels of Jinping Ⅱ Hydropower Station[D]. Beijing: Beijing University of Technology, 2012. (in Chinese))
    [13] 吴世勇, 王 鸽. 锦屏二级水电站深埋长隧洞群的建设和工程中的挑战性问题[J]. 岩石力学与工程学报, 2010, 29(11): 2161-2171. (WU Shi-yong, WANG Ge. Challenge Issues in construction and project of large-scale deep-buried tunnel group of Jinping Ⅱ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2161-2171. (in Chinese))
    [14] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制:即时型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 433-444. (FENG Xia-ting, CHEN Bing-rui, MING Hua-jun, et al. Evolution law and mechanism of rockbursts at deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. (in Chinese))
    [15] 陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. (CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, et al. Evolution law and mechanism of rockbursts at deep tunnels: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561-569. (in Chinese))
    [16] 陈炳瑞, 冯夏庭, 曾雄辉, 等. 深埋隧洞TBM掘进微震实时监测与特征分析[J]. 岩石力学与工程学报, 2011, 30(2): 275-283. (CHEN Bing-rui, FENG Xia-ting, ZENG Xiong-hui, et al. Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 275-283. (in Chinese))
    [17] 明华军, 陈炳瑞, 冯夏庭,等. 基于矩张量的深埋隧洞岩爆机理分析[J]. 岩土力学, 2013, 34(1): 163-181. (MING Hua-jun, FENG Xia-ting, CHEN Bing-rui, et al. Rockburst mechanism analysis for deep-buried tunnel based on moment tensor[J]. Rock and Soil Mechanics, 2013, 34(1): 163-181. (in Chinese))
    [18] 于 群, 唐春安, 李连崇, 等. 基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析[J].岩土工程学报, 2014, 36(12): 2315-2322. (YU Qun, TANG Chun-an, LI Lian-chong, et al. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. (in Chinese))
    [19] 冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013. (FENG Xia-ting, CHEN Bing-rui, ZHANG Chuan-qing, et al. Mechanism, warning and dynamic control of rockburst development processes[M]. Beijing: Science Press, 2013. (in Chinese))
    [20] 袁 亮, 彭邦兴. 锦屏二级水电站引水隧洞岩爆段TBM穿越技术[J]. 水电站设计, 2012, 12(增刊1): 13-17. (YUAN Liang, PENG Bang-xing. TBM excavation technology of rockburst zone of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J]. Design of Hydroelectric Power Station, 2012, 12(S1): 13-17. (in Chinese))
    [21] 张照太. 大直径 TBM 通过深埋强岩爆洞段的岩爆防治方法[J]. 煤炭学报, 2011, 36(2): 431-435. (ZHANG Zhao-tai. TBM construction method in the large overburden and intensive rockburst zone[J]. Journal of China Coal Society, 2011, 36(2): 431-435. (in Chinese))
    [22] GB50287—2006水力发电工程地质勘查规范[S]. 2006. (GB50287—2006 Code for hydropower engineering geological investigation[S]. 2006. (in Chinese))
    [23] BLAKE W, HEDLEY D G F. Rockbursts: case studies from North American hardrock mines[M]. Littleton, Colorado: Society for Mining, Metallurgy and Exploration Inc, 2003: 19-28.
    [24] 赵周能, 冯夏庭, 丰光亮, 等. 深埋隧洞微震活动区与岩爆的相关性研究[J]. 岩土力学, 2013, 34(2): 491-497. (ZHAO Zhou-neng, FENG Xia-ting, FENG Gang-liang, et al. Study on relativity between rockburst and microseismic activity zone in deep-buried tunnel[J]. Rock and Soil Mechanics, 2013, 34(2): 491-497. (in Chinese))
    [25] MENDECKI A J. Keynote address: Real time quantitative seismology in mines[C]// Rockbursts and Seismicity in Mines, Rotterdam, 1993: 287-295.
    [26] KOSTROV B V. Seismic moment and energy of earthquakes and seismic flow of rock[J]. Phys Solid Earth, 1974(13):13-21.
    [27] MENDECKI A J. Seismic monitoring in mines [M]. Lodon: Chapman & Hall, 1997.
    [28] MCCOMB W D. The physics of fluid turbulence[J]. Chemical Physics, 1990.
    [29] MENDECKI A J. Data-driven understanding of seismic rock mass response to mining[C]// Proceedings of the 5th International Symposium on Rockbursts and Seismicity in Mines. Johannesburg: The South Africa Institute of Mining and Metallurgy, 2001: 1-9.
计量
  • 文章访问数:  393
  • HTML全文浏览量:  2
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-24
  • 发布日期:  2017-07-24

目录

    /

    返回文章
    返回