• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于土壤物理特性扩展技术的土水特征曲线预测方法

刘士雨, 俞缙, 蔡燕燕, 涂兵雄

刘士雨, 俞缙, 蔡燕燕, 涂兵雄. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017
引用本文: 刘士雨, 俞缙, 蔡燕燕, 涂兵雄. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017
LIU Shi-yu, YU Jin, CAI Yan-yan, TU Bing-xiong. Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017
Citation: LIU Shi-yu, YU Jin, CAI Yan-yan, TU Bing-xiong. Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. DOI: 10.11779/CJGE201705017

基于土壤物理特性扩展技术的土水特征曲线预测方法  English Version

基金项目: 国家自然科学基金面上项目(51679093,51374112); 福建省自然科学基金面上项目(2015J01210); 福建省教育厅科技产学研项目(JA15023); 华侨大学引进高层次人才启动项目(14BS211)
详细信息
    作者简介:

    刘士雨(1979- ),男,博士,讲师,主要从事非饱和土力学理论与试验等方面的教学和研究工作。E-mail: scholarrain@163.com。

  • 中图分类号: TU442

Prediction of soil water characteristic curve using physically based scaling technique

  • 摘要: 土水特征曲线是模拟水和污染物在非饱和土中运移的重要水力特性参数。但是,土水特征曲线的直接量测方法比较困难。Arya 和 Paris 提出了一种通过粒径分布曲线预测土水特征曲线的模型——AP模型。该模型引入一个转换系数a建立土体假想形态与真实形态之间的联系。但是,现有的推导系数a的方法一方面计算过程过于复杂,另一方面没有全面考虑土的物理特性。基于土壤物理特性扩展技术提出一种新的计算参数a的方法。为了验证新方法,从非饱和土水力特性数据库中选出不同类型的土壤样本,采用新方法分别计算出各类型土壤的参数a。然后,将计算出的参数a用于预测其他土样的土水特征曲线,从而验证新方法计算出的参数a的有效性。还将提出的新方法与其他利用AP模型预测土水特征曲线的代表性方法进行对比,结果显示该方法预测结果更加准确。
    Abstract: The soil water characteristic curve (SWCC) is an important hydraulic parameter for modeling water flow and contaminant transport in the unsaturated soil. However, direct measurement of the SWCC is still difficult. The Arya and Paris (AP) model estimates the SWCC from particle-size distribution curve (PSD) based on the shape similarity of the two curves. It introduces an empirical parameter, a, used to scale pore attributes from hypothetical formations to natural structures. Several approaches are used to derive a. However, the calculation procedures of these approaches are either quite complicated or developed without paying much attention to the physical significance of the soil properties. In the present paper the physically based scaling technique (PBS) is employed to derive a for the AP model. Fifty soil samples, representing a range of textures that include sand, sandy loam, loam, silt loam and clay, are selected from UNSODA hydraulic property database for calculating a using the PBS approach. In addition, nineteen soil samples with different textures are used to verify the effectiveness of proposed a values. The results are compared with those of other approaches and show that the PBS technique combining with the AP model is a more useful and easier approach to predict SWCC from PSD.
  • [1] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-271. (CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-271. (in Chinese))
    [2] HENRY E J, SMITH J E. Numerical demonstration of surfactant concentration-dependent capillarity and viscosity effects on infiltration from a constant flux line source[J]. Journal of Hydrology, 2006, 329(1): 63-74.
    [3] IRESON A M, MATHIAS S A, WHEATER H S, et al. A model for ?ow in the chalk vadose zone incorporating progressive weathering[J]. Journal of Hydrology, 2009, 365(3): 244-260.
    [4] LIU S Y,YASUFUKU N, LIU Q, et al. Bimodal and multimodal descriptions of soil-water characteristic curves for structural soils[J]. Water Science and Technology, 2013, 67(8): 1740-1747.
    [5] LIU S Y,YASUFUKU N, LIU Q, et al. Physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function[J]. Water Science and Technology, 2013, 68(2): 328-334.
    [6] 张季如, 胡 泳, 余红玲, 等. 黏性土粒径分布的多重分形特性及土-水特征曲线的预测研究[J]. 水利学报, 2015, 46(6): 650-657. (ZHANG Ji-ru, HU Yong, YU Hong-ling, et al. Predicting soil-water characteristic curve from multi-fractal particle-size distribution of clay[J]. Journal of Hydraulic Engineering, 2015, 46(6): 650-657. (in Chinese))
    [7] ARYA L M, BOWMAN D C, THAPA B B, et al. Scaling soil water characteristics of golf course and athletic field sands from particle-size distribution[J]. Soil Science Society of America Journal, 2008, 72(1): 25-32.
    [8] 刘建立, 徐绍辉, 刘 慧. 估计土壤水分特征曲线的间接方法研究进展[J]. 水利学报, 2004, 35(2): 68-78. (LIU Jian-li, XU Shao-hui, LIU Hui. A review of development in estimating soil water retention characteristics from soil data[J]. Journal of Hydraulic Engineering, 2004, 35(2): 68-78. (in Chinese))
    [9] ARYA L M, PARIS J F. A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030.
    [10] BASILE A, D’URSO G. Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination[J]. Soil Technology, 1997, 10(3): 261-272.
    [11] ARYA L M, LEIJ F J, VAN GENUCHTEN M TH, et al. Scaling parameter to predict the soil water characteristic from particle-size distribution data[J]. Soil Science Society of America Journal, 1999, 63(3): 510-519.
    [12] VAZ C M P, IOSSI M D F, NAIME J D M, et al. Validation of the Arya and Paris water retention model for Brazilian soils[J]. Soil Science Society of America Journal, 2005, 69(3): 577-583.
    [13] MILLER E E, MILLER R D. Physical theory of capillary flow phenomena[J]. Journal of Applied Physics. 1956, 27(4): 324-332.
    [14] PECK A J, LUXMOORE R J, STOLAZY J C. Effects of spatial variability of soil hydraulic properties in water budgetmodelling[J]. Water Resources Research, 1997, 13(2): 348-354.
    [15] TULI A, KOSUGI K, HOPMANS J W. Simultaneous scaling of soil water characteristic and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution[J]. Water Resources Research, 2001, 24(6): 677-688.
    [16] KOSUGI K, HOPMANS J W. Scaling water retention curves for soils with lognormal pore-size distribution[J]. Soil Science Society of America Journal, 1998, 62(6): 1496-1505.
    [17] DAS B S, HAWS N W, RAO P S C. Defining geometric similarity in soils[J]. Vadose Zone Journal, 2005, 4(2): 264-270.
    [18] NEMES A, SCHAAP M G, LEIJ F J. Description of the unsaturated soil hydraulic database UNSODA version 2.0[J]. Journal of Hydrology, 2001, 251(3): 151-162.
    [19] WARRICK A W, MULLEN G J, NIELSEN D R. Scaling field measured soil hydraulic properties using similar media concept[J]. Water Resources Research, 1977, 13(2): 355-362.
    [20] CHAN T P, GOVINDARAJU R S. Soil water retention curves from particle-size distribution data based on polydisperse sphere systems[J]. Vadose Zone Journal, 2004, 3(4): 1443-1454.
    [21] FREDLUND D G, XING A. Equations for the soil water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
    [22] BUCHAN G D. Applicability of the simple lognormal model to particle-size distribution in soils[J]. Soil Science, 1989, 147(3): 155-161.
    [23] TYLER S, WHEATCRAFT S. Application of fractal mathematics to soil water characteristic estimation[J]. Soil Science Society of America Journal, 1989, 53(4): 987-996.
计量
  • 文章访问数:  363
  • HTML全文浏览量:  3
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-21
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回