• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

类岩石脆性材料非闭合裂纹的Ⅰ-Ⅱ压剪复合型断裂准则研究

李部, 黄润秋, 吴礼舟

李部, 黄润秋, 吴礼舟. 类岩石脆性材料非闭合裂纹的Ⅰ-Ⅱ压剪复合型断裂准则研究[J]. 岩土工程学报, 2017, 39(4): 662-668. DOI: 10.11779/CJGE201704010
引用本文: 李部, 黄润秋, 吴礼舟. 类岩石脆性材料非闭合裂纹的Ⅰ-Ⅱ压剪复合型断裂准则研究[J]. 岩土工程学报, 2017, 39(4): 662-668. DOI: 10.11779/CJGE201704010
LI Bu, HUANG Run-qiu, WU Li-zhou. Compression-shear fracture criteria for mixed mode I-II of open crack of rock-like brittle materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 662-668. DOI: 10.11779/CJGE201704010
Citation: LI Bu, HUANG Run-qiu, WU Li-zhou. Compression-shear fracture criteria for mixed mode I-II of open crack of rock-like brittle materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 662-668. DOI: 10.11779/CJGE201704010

类岩石脆性材料非闭合裂纹的Ⅰ-Ⅱ压剪复合型断裂准则研究  English Version

基金项目: 国家科学自然基金重点项目(41130745); 国家基础研究计划(“973”计划)项目(2013CB733202); 四川省青年科技创新研究团队项目(2015TD0030)
详细信息
    作者简介:

    李 部(1990- ),男,博士研究生,主要从事岩土力学与工程地质方面的研究。E-mail:lbcdut@foxmail.com。

    通讯作者:

    吴礼舟,E-mail:wulizhou07@cdut.cn

Compression-shear fracture criteria for mixed mode I-II of open crack of rock-like brittle materials

  • 摘要: 实际工程中,结构体裂纹常处于拉剪和压剪复合受力状态,研究适合于复合型裂纹的断裂准则和裂纹扩展机理具有重要的理论意义和实用价值。以Ⅰ-Ⅱ复合型裂纹为研究对象,基于线弹性理论,在考虑裂纹几何特征及受力形式的基础上,系统介绍了裂纹应力强度因子(SIF)的理论解。提出了适用于Ⅱ型断裂的径向剪应力准则和双剪应力准则。对于Ⅰ-Ⅱ复合型裂纹,提出用等效Ⅰ、Ⅱ型SIF比值与Ⅰ、Ⅱ型断裂韧度比值的关系判定裂纹断裂类型,并分别选择适合于Ⅰ、Ⅱ型断裂的断裂准则,计算了裂纹断裂扩展理论角度。理论断裂角与预制非闭合裂纹类岩石脆性材料压剪断裂试验结果符合得较好。
    Abstract: In practical projects, structural fracture often undergoes complex stresses. The studies on the fracture mechanism of mixed mode cracks are of important theoretical significance and practical implication. Based on the mixed I - II crack mode and the linear elastic theory, the geometrical characteristics and stress form of cracks are considered, and the theoretical solution of the stress intensity factor (SIF) at the crack tip is introduced. The radial shear stress criterion and the twin shear stress criterion for mode II fracture are put forward. For the I - II mixed-mode open crack, a new method to determine the fracture type is proposed by comparing the SIF ratio of equivalent mode I and II with that of mode I and II fracture toughness. In addition, an appropriate fracture criterion for mode I or II fracture is used to calculate the theoretical initiation angle. The compression-shear fracture tests on the brittle rock-like samples with a single open pre-crack are carried out under compression. The results indicate that the theoretical initiation angles and the experimental results are in good agreement.
  • [1] 李银平. 岩石类材料损伤断裂机理研究[D]. 武汉: 华中科技大学, 2003. (LI Yin-ping. Damage and fracture mechanism of rock materials[D]. Wuhan: Huazhong University of Science and Technology, 2003. (in Chinese))
    [2] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Fluids Engineering, 1963, 85(4): 519-527.
    [3] 赵艳华, 徐世烺. I - II复合型裂纹脆性断裂的最小J 2 准则[J]. 工程力学, 2002, 19(4): 94-98. (ZHAO Yan-hua, XU Shi-lang. The minimum J 2 criterion for I - II mixed mode brittle fracture[J]. Engineering Mechanics, 2002, 19(4): 94-98. (in Chinese))
    [4] SIH G C. Energy-density concept in fracture mechanics[J]. Engineering Fracture Mechanics, 1973, 5(4): 1037-1040.
    [5] NUISMER R J. An energy release rate criterion for mixed mode fracture[J]. International Journal of Fracture Mechanics, 1975, 11(2): 245-250.
    [6] 赵诒枢. 复合型裂纹扩展的应变能准则[J]. 固体力学学报, 1987(1): 65-70. (ZHAO Yi-shu. A strain energy criterion for mixed mode crack propagation[J]. Acta Mechanica Solida Sinica, 1987(1): 65-70. (in Chinese))
    [7] 林拜松. 滑开型断裂的复合型脆断判据[J]. 应用数学和力学, 1985, 6(11): 977-983. (LIN Bai-song. The mixed mode brittle fracture criteria in sliding mode fracture[J]. Applied Mathematics and Mechanics, 1985, 6(11): 977-983. (in Chinese))
    [8] 周家文, 徐卫亚, 石 崇. 基于破坏准则的岩石压剪断裂判据研究[J]. 岩石力学与工程学报, 2007, 26(6): 1194-1201. (ZHOU Jia-wen, XU Wei-ya, SHI Chong. Investigation on compression-shear fracture criterion of rock based on failure criteria[J]. Chinese Journal of Rock Mechanics and Engineering. 2007, 26(6): 1194-1201. (in Chinese))
    [9] SUN Zong-qi. Is crack branching under shear loading caused by shear fracture: a critical review on maximum circumferential stress theory[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(2): 287-292.
    [10] BOBET A. The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics, 2000, 66(2): 187-219.
    [11] BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1998: 35(7): 863-888.
    [12] SHEN B, STEPHANSSON O, EINSTEIN H H, et al. Coalescence of fractures under shear stress experiments[J]. Journal of Geophysical Research, 1995, 100(4): 5975-5990.
    [13] WONG R H C, CHAU K T, TANG C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 909-924.
    [14] LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(13): 1645-1658.
    [15] 李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析[J]. 岩石力学与工程学报, 2006, 25(3): 462-466. (LI Yin-ping, YANG Chun-he. Influence of geometric characteristics of pre-existing cracks on mixed mode fractures under compression-shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 462-466. (in Chinese))
    [16] 李银平. 含预制裂纹大理岩的压剪试验分析[J]. 岩土工程学报, 2004, 26(1): 120-124. (LI Yin-ping. Experimental research on pre-existing cracks in marble under compression[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 120-124. (in Chinese))
    [17] 李世愚, 和泰名, 尹祥础, 等. 岩石断裂力学导论[M]. 合肥: 中国科学技术大学出版社, 2010. (LI Shi-yu, HE Tai-ming, YIN Xiang-chu, et al. Introduction to rock fracture mechanics[M]. Hefei: China University of Science and Technology Press, 2010. (in Chinese))
    [18] 周小平, 杨海清, 董 捷. 压应力状态下多裂纹扩展过程数值模拟[J]. 岩土工程学报, 2010, 32(2): 192-197. (ZHOU Xiao-ping, YANG Hai-qing, DONG Jie. Numerical simulation of multiple-crack growth under compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 192-197. (in Chinese))
    [19] VASARHELYI B, BOBET A. Modeling of crack initiation, propagation and coalescence in niaxial compression[J]. Rock Mechanics and Rock Engineering, 2000, 33: 119-139.
    [20] PARK C H, BOBET A. Crack coalescence in specimens with open and closed flaws: a comparison[J]. International Journal Rock Mechanics and Mining Sciences. 2009, 46(5): 819-829.
    [21] 车法星, 黎立云, 刘大安. 类岩石材料多裂纹体断裂破坏试验及有限元分析[J]. 岩石力学与工程学报, 2000, 19(3): 295-298. (CHE Fa-xing, LI Li-yun, LIU Da-an. Fracture experiments and finite element analysis for multi-cracks body of rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 295-298. (in Chinese))
    [22] 孙宗颀, 饶秋华, 王桂尧. 剪切断裂韧度( )确定的研究[J]. 岩石力学与工程学报, 2002, 21(2): 199-203. (SUN Zong-qi, RAO Qiu-hua, WANG Gui-yao. Study on determination of shear fracture toughness ( )[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(2): 199-203. (in Chinese))
    [23] 孙宗颀. 如何判断在各种加载下的断裂模式:Ⅰ型还是Ⅱ型[J]. 三峡大学学报(自然科学版), 2004, 26(1): 27-30. (SUN Zong-qi. How to judge fracture mode under arbitrary loading: modeⅠor modeⅡfracture[J]. Journal of China Three Gorges University (Natural Sciences), 2004, 26(1): 27-30. (in Chinese))
    [24] BACKERS T, STEPHANSSON O. ISRM suggested method for the determination of mode II fracture toughness[J]. Rock Mechanics and Rock Engineering, 2012,45: 1011-1022.
    [25] MUSKHELISHVILI N I. Some basic problems of the mathematical theory of elasticity[M]. Leyden: Noordhoff, 1953.
    [26] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社,1993. (China Aviation Research Institute. Handbook of stress intensity factors[M]. Beijing: Science Press, 1993. (in Chinese))
    [27] 杨 慧, 曹 平, 江学良, 等. 双轴压缩下闭合裂纹应力强度因子的解析与数值方法[J]. 中南大学学报(自然科学版), 2008, 39(4): 850-855. (YANG Hui, CAO Ping, JIANG Xue-liang, et al. Analytical and numerical research of stress intensity factor with a closed-crack in finite-rock-plates under biaxial compression[J]. Journal of Central South University (Science and Technology), 2008, 39(4): 850-855. (in Chinese))
    [28] 俞茂宏. 双剪理论及其应用[M]. 北京: 科学出版社, 1998. (YU Mao-hong. Double shear theory and its application[M]. Beijing: Science Press, 1998. (in Chinese))
    [29] 杨 慧, 曹 平, 江学良, 等. 闭合裂纹断裂的有效剪应力准则[J]. 岩土力学, 2008, 29(增刊1): 470-474. (YANG Hui, CAO Ping, JIANG Xue-liang, et al. Effective shear stress criterion for closed-crack fracture[J]. Rock and Soil Mechanics, 2008, 29(S1): 470-474. (in Chinese))
计量
  • 文章访问数:  452
  • HTML全文浏览量:  4
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-04
  • 发布日期:  2017-05-19

目录

    /

    返回文章
    返回