• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

抗液化排水刚性桩沉桩过程中的孔压响应

王翔鹰, 刘汉龙, 江强, 陈育民

王翔鹰, 刘汉龙, 江强, 陈育民. 抗液化排水刚性桩沉桩过程中的孔压响应[J]. 岩土工程学报, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
引用本文: 王翔鹰, 刘汉龙, 江强, 陈育民. 抗液化排水刚性桩沉桩过程中的孔压响应[J]. 岩土工程学报, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
Citation: WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008

抗液化排水刚性桩沉桩过程中的孔压响应  English Version

基金项目: 国家自然科学基金面上项目(51379067); 重点国际合作研究项目(51420105013); 中央高校基本科研业务费项目(2015B17314)
详细信息
    作者简介:

    王翔鹰 (1988- ),男,安徽庐江人,博士研究生,从事抗液化排水刚性桩相关研究。E-mail: wxy5407@163.com。

Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile

  • 摘要: 抗液化排水刚性桩是一种将刚性桩与竖向排水体相结合的新桩型,可用于提升饱和土地基在地震作用下的抗液化能力。基于某建筑桩基工程,首次开展了抗液化排水刚性桩和不含排水体的普通刚性桩的沉桩对比现场试验,分析了沉桩过程中桩周土体超孔隙水压力的增长及消散规律。试验结果表明:沉桩过程中,抗液化排水刚性桩对桩周超孔压的消散作用对于可液化土层所在的桩侧深部埋深处最明显(试验测点距桩心2倍桩径、埋深-15 m),该处排水桩的超孔压峰值为普通桩的1/4到1/2,排水桩消散70%峰值超孔压所需时间仅为普通桩的1/3;在深部埋深(-15 m),排水桩的最大影响半径为2~4倍桩径,在上中部埋深(-5 m、-10 m),排水桩的最大影响半径为4~8倍桩径;在影响范围内,同位置排水桩对深部可液化土层超孔压的消散作用要大于上中部埋深土层。现场试验数据为抗液化排水刚性桩的桩间距选择提供了有力的设计参考依据。
    Abstract: The liquefaction resistant rigid-drainage pile is a new type of pile which can be used in geotechnical earthquake engineering. The pile combines the bearing capacity of rigid pile and the drain-ability of gravel pile. Based on the pile foundation engineering of Jiangyin No.1 High School's new campus, the pile-driving field tests on liquefaction resistant rigid-drainage pile are carried out for the first time. The excess pore water pressures around drainage piles and ordinary piles are recorded during field tests, depending on various data from different locations in depths and displacements. According to these test results, the maximum excess pore water pressure around the ordinary piles is larger than that around the drainage piles during the pile driving. When the pile driving is finished, the excess pore water pressures around the drainage piles dissipate faster than those around the ordinary piles. In the influence area, the excess pore water pressure dissipation of drainage piles at deep depths where a liquefiable soil layer is located is more obviously than that at shallow depths. The data of piles tests may provide other engineers with reliable evidences.
  • [1] YASUDA S, HARADA K. Measures developed in Japan after the 1964 Niigata earthquake to counter the liquefaction of soil[C]//10th U.S. National Conference on Earthquake Engineering. Anchorage, 2014.
    [2] ASHOUR M, NORRIS G. Lateral loaded pile response in liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 404-414.
    [3] CHEN Y, LIU H, CHEN Z. Working mechanism and numerical simulation of assembly coastal building techniques[J]. Journal of Central South University of Technology, 2008, 15(S2): 180-185.
    [4] MOAYEDI H, HUAT B B K, MOKHBERI M, et al. Using stone column as a suitable liquefaction remediation in Persian Gulf coast[J]. Electronic Journal of Geotechnical Engineering, 2010, 15P: 1757-1767.
    [5] PARK Y H, KIM S R, KIM S H, et al. Liquefaction of embankments on sandy soils and the optimum countermeasure against the liquefaction[C]// 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000(1): 1-5.
    [6] ADALIER K, ELGAMAL A. Mitigation of liquefaction and associated ground deformations by stone columns[J]. Engineering Geology, 2004, 72(3/4): 275-291.
    [7] TSUKAMOTO Y, ISHIHARA K, YAMAMOTO M, et al. Soil densification due to static sand pile installation for liquefaction remediation[J]. Soils and Foundations, 2000, 40(2): 9-20.
    [8] KRISHNA a. M, MADHAV M R, LATHA G M. Liquefaction mitigation of ground treated with granular piles: densification effect[J]. ISET Journal of Earthquake, 2006, 43(473): 105-120.
    [9] SADREKARIMI A, GHALANDARZADEH A. Evaluation of gravel drains and compacted sand piles in mitigating liquefaction[J]. Proceedings of the ICE-Ground Improvement, 2005, 9(3): 91-104.
    [10] TANAKA H, KITA H, IIDA T, SAIMURA Y, TAKANO Y. Liquefaction countermeasure using steel sheet pile with drain capability[J]. The Sumitomo Search, 1996(58): 72-81.
    [11] TANAKA H, KITA H, IIDA T, et al. Countermeasure using steel sheet pile with drain capability[C]// Eleventh World Conference on Earthquake Engineering. Acapulco, 1996.
    [12] OTSUSHI K, KATO T, HARA T, et al. Study on a liquefaction countermeasure for flume structure by sheet-pile with drain[J]. Ground Improvement Technologies and Case Histories, 2009: 437-443.
    [13] KITA H, IIDA T, NISHITANI M, et al. Experimental study on countermeasures for liquefaction by steel piles with drain[J]. Earthquake Engineering, Tenth World Conference, 1992: 1701-1706.
    [14] ADALIER K, PAMUK A, ZIMMIE T F. Earthquake retrofit of highway/railway embankments by sheet-pile walls[J]. Geotechnical and Geological Engineering, 2004, 22(1): 73-88.
    [15] OTSUSHI K, KATO T, HARA T, et al. Analytical study on mitigation of liquefaction-related damage to flume channel using sheet-pile with drain[J]. GeoFlorida 2010: Advances in Analysis, Modeling & Design, 2010(GSP 199): 3062-3071.
    [16] 刘汉龙. 岩土工程技术创新方法与实践[J]. 岩土工程学报, 2013, 35(1): 34-58. (LIU Han-long. Technological innovation methods and practices in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 34-58. (in Chinese))
    [17] 刘汉龙. 一种抗液化排水刚性桩: 中国, CN 2873886Y[P]. 中国: 2007: 0-5. (LIU Han-long. Liquefaction resistant rigid-drainage pile: China, CN 2873886Y[P]. China: 2007: 0-5. (in Chinese))
    [18] 陈育民, 刘汉龙, 赵 楠. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12): 114-119. (CHEN Yu-min, LIU Han-long, ZHAO Nan. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 2010, 43(12): 114-119. (in Chinese))
  • 期刊类型引用(11)

    1. 王春萍,廖益林,刘建锋,刘健,赵星光,陈亮,王璐. 应力及含水状态对裂隙花岗岩蠕变特性的影响研究. 岩石力学与工程学报. 2024(04): 907-917 . 百度学术
    2. 刘旸,王迎超,余宏波,赵闯,郭崟,左亚鹏. 考虑宏细观耦合损伤的注浆加固体渗流-蠕变本构模型及试验验证. 中国矿业大学学报. 2024(05): 1006-1021 . 百度学术
    3. 张海洋,刘飞杨,刘健. 多场耦合条件下含裂隙北山花岗岩蠕变特性研究. 物探与化探. 2024(06): 1539-1544 . 百度学术
    4. 王春萍,刘建锋,刘健,陈亮,王璐. 含卸荷裂隙北山花岗岩蠕变特征试验研究. 地下空间与工程学报. 2023(03): 888-896 . 百度学术
    5. 朱永建,李鹏,王平,任恒,陶玮,梅成成,王希之. 深部高应力煤巷围岩径向梯度损伤特征试验研究. 岩石力学与工程学报. 2023(11): 2643-2654 . 百度学术
    6. 李志强,刘国锋,晏长根,董凯,崔洁. 含原生隐微裂隙岩石颗粒流模型构建及细观参数标定方法研究. 工程地质学报. 2023(06): 1842-1853 . 百度学术
    7. 张东晓,郭伟耀,赵同彬,谷雪斌,陈玏昕. 岩石Ⅰ型裂纹定向扩展规律试验研究. 岩土力学. 2022(S2): 231-244 . 百度学术
    8. 谢云鹏,陈秋南,贺泳超,陈正红,田伟权,周亚军,黄小城,李松. 深部高地应力环境下含白云母及石墨炭质板岩蠕变模型构建及其应用. 中南大学学报(自然科学版). 2021(02): 568-578 . 百度学术
    9. 曾佳君,张志军,张栩栩,蒲成志. 张开度影响的水平裂隙类岩试件破断试验与分析. 岩土工程学报. 2020(03): 523-532 . 本站查看
    10. 赖新河,赖宏伟,卢玉丽. X型裂隙破裂试验及数值模拟研究. 水利科技与经济. 2020(03): 13-17 . 百度学术
    11. 孙闯,敖云鹤,张家鸣,王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究. 岩土工程学报. 2020(09): 1687-1695 . 本站查看

    其他类型引用(33)

计量
  • 文章访问数:  357
  • HTML全文浏览量:  4
  • PDF下载量:  318
  • 被引次数: 44
出版历程
  • 收稿日期:  2016-01-25
  • 发布日期:  2017-05-19

目录

    /

    返回文章
    返回