• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

低渗透性土柱对流-弥散迁移试验解析模拟边界适用性研究

曾兴, 詹良通, 陈云敏

曾兴, 詹良通, 陈云敏. 低渗透性土柱对流-弥散迁移试验解析模拟边界适用性研究[J]. 岩土工程学报, 2017, 39(4): 636-644. DOI: 10.11779/CJGE201704007
引用本文: 曾兴, 詹良通, 陈云敏. 低渗透性土柱对流-弥散迁移试验解析模拟边界适用性研究[J]. 岩土工程学报, 2017, 39(4): 636-644. DOI: 10.11779/CJGE201704007
ZENG Xing, ZHAN Liang-tong, CHEN Yun-min. Applicability of boundary conditions for analytical modelling of advection-dispersion transport in low-permeability clay column tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 636-644. DOI: 10.11779/CJGE201704007
Citation: ZENG Xing, ZHAN Liang-tong, CHEN Yun-min. Applicability of boundary conditions for analytical modelling of advection-dispersion transport in low-permeability clay column tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 636-644. DOI: 10.11779/CJGE201704007

低渗透性土柱对流-弥散迁移试验解析模拟边界适用性研究  English Version

基金项目: 国家自然科学基金项目(51378466)
详细信息
    作者简介:

    曾 兴(1987- ),男,湖南湘潭人,博士,主要从事环境岩土工程相关研究。E-mail: xzeng@zju.edu.cn。

Applicability of boundary conditions for analytical modelling of advection-dispersion transport in low-permeability clay column tests

  • Abstract: The column tests on advection-dispersion are commonly used to measure the contaminant transport parameters in soils. The applicability of boundary conditions for analytical modelling of the column tests is under debate. The low-permeability kaolin column tests subjected to different hydraulic heads are conducted at 1g and under centrifuge conditions. The pore-water concentration profiles and the effluent concentration curves in the columns are obtained, and the applicability of boundary conditions for different scenarios is discussed. For the modelling of pore-water concentration profile in the low-permeability soil column, the continuous mass flux at the inlet boundary is better than the continuous concentration, and the combination of the continuous mass flux at the inlet boundary and the semi-infinite at the outlet boundary is recommended for the modelling of pore-water concentration profile. For the modelling of effluent concentration curve, the combination of the continuous concentration at the inlet boundary and the semi-infinite at the outlet boundary is better than other three combinations of boundary conditions, which is recommended for the modelling of effluent concentration curve.
  • [1] SHACKELFORD C D. Critical concepts for column testing[J]. Journal of Geotechnical Engineering, 1994, 120(10): 1804-1828.
    [2] WANG T H, LI M H, TENGA S P. Bridging the gap between batch and column experiments: a case study of C s adsorption on granite[J]. Journal of Hazardous Materials, 2009, 161(1): 409-415.
    [3] IRENE M C L, ZHANG J H, HU L M. Centrifuge modeling of cadmium migration in saturated and unsaturated soils[J]. Soil and Sediment Contamination, AHA, 2005, 14(5): 417-431.
    [4] HENSLEY P J, SCHOFIELD A N. Accelerated physical modelling of hazardous-waste transport[J]. Géotechnique, 1991, 41(3): 447-465.
    [5] ARULANANDAN K, THOMPSON P Y, KUTTER B L, et al. Centrifuge modeling of transport processes for pollutants in soils[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(2): 185-205.
    [6] KUMAR R P, SINGH D N. Geotechnical centrifuge modeling of chloride diffusion through soils[J]. International Journal of Geomechanics, 2012, 12(3): 327-332.
    [7] VAN GENUCHTEN M T, PARKER J C. Boundary conditions for displacement experiments through short laboratory soil columns[J]. Soil Science Society of America Journal, 1984, 48(4): 703-708.
    [8] LAPIDUS L, AMUNDSON N R. Mathematics of adsorption in beds.vi.the effect of longitudinal diffusion in ion exchange and chromatographic columns[J]. Journal of Physical Chemistry, 1956, 56(8): 984-988.
    [9] OGATA A, BANKS R B. A solution of the differential equation of longitudinal dispersion in porous media[R]. Washington D C: US Geologic Survey, 1961.
    [10] LINDSTROM F T, HAQUE R, FREED V H, et al. Theory on the movement of some herbicides in soils; Linear diffusion and convection of chemicals in soils[J]. Environ Sci Technol, 1967, 1: 561-565.
    [11] ClEARY R W, ADRIAN D D. Analytical solution of the convection-dispersive equation for cation adsorption in soils[J]. Soil Sci Soc Am Proc, 1973, 37: 197-199.
    [12] BRENNER H. The diffusion model of longitudinal mixing in beds of finite length[J]. Chem Eng Sci, 1962, 17: 229-243.
    [13] PARLANGE J Y, BARRY D A, STARR J L. Comments on “Boundary conditions for displacement experiments through short laboratory soil columns”[J]. Soil Sci Soc Am J, 1985, 49: 1325.
    [14] VAN GENUCHTEN M T, PARKER J C. Reply to “Comments on boundary conditions for displacement experiments through short laboratory soil columns”[J]. Soil Sci Soc Am J, 1985, 49: 1325-1326.
    [15] KREFT A, ZUBER A. Comments on “Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport”[J]. Water Resour Res, 1986, 22: 1157-1158.
    [16] CELORIE J A, VINSON T S, WOODS S L, et al. Modeling solute transport by centrifugation[J]. Journal of Environmental Engineering, 1989, 115(3): 513-526.
    [17] SHACKELFORD C D, REDMOND P L. Solute breakthrough curves for processed kaolin at low flow rates[J]. Journal of Geotechnical Engineering, 1995, 120(1): 17-32.
    [18] MCKINLEY J D, PRICE A, LYNCH R J, et al. Centrifuge modelling of the transport of a pulse of two contaminants[J]. Géotechnique, 1998, 48(3): 421-425.
    [19] NAKAJIMA H, HIROOKA A, TAKEMURA J, et al. Centrifuge modeling of one-dimensional subsurface contamination[J]. Journal of the American Water Resources Association, 1998, 34(6): 1415-1425.
    [20] ROWE K. 1-D pollutant Migration in soils of finite depth[J]. Journal of Geotechnical Engineering, 1985, 111(4): 479-499.
    [21] NOVAKOWSKI K S. An evaluation of boundary conditions for one-dimensional solute transport: 1 Mathematical development[J]. Water Resources Research, 1992a, 28(9): 2399-2410.
    [22] NOVAKOWSKI K S. An evaluation of boundary conditions for one-dimensional solute transport: 2 Column experiments[J]. Water Resources Research, 1992b, 28(9): 2411-2423.
    [23] SCHWARTZ R C, MCINNES K J, JUO A S R, et al. Boundary effects on solute transport in finite soil columns[J]. Water Resources Research, 1999, 35(3): 671-681.
    [24] 钟孝乐. 重金属在高岭土中对流-弥散参数的测试研究[D]. 杭州: 浙江大学, 2013: 27-35. (ZHONG Xiao-le. Study on the testing of convection-diffusion parameters of heavy metals in kaolin clay[D]. Hangzhou: Zhejiang University, 2013: 27-35. (in Chinese))
    [25] 陈云敏, 韩 超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. (CHEN Yun-min, HAN Chao, LING Dao-sheng et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese))
    [26] 曾 兴, 詹良通, 钟孝乐, 等. 低渗透性黏土中氯离子弥散作用离心机模拟的相似性研究[J]. 浙江大学学报(工学版), 2016, 50(2): 241-249. (ZENG Xing, ZHAN Liang-tong, ZHONG Xiao-le, et al. Similarity of centrifuge modeling of chloride dispersion in low-permeability clay[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(2): 241-249. (in Chinese))
  • 期刊类型引用(4)

    1. 唐小平,邓良平,汪建海,梁榆峰,江杰,叶耿昌. 排水管道土压力数值分析及非开挖修复内衬管壁厚优化. 给水排水. 2024(02): 139-145 . 百度学术
    2. 张常光,吴凯,孟祥忠,王晓轮. 稳态渗流下非饱和土涵洞竖向土压力的迭代解与简化. 哈尔滨工业大学学报. 2024(03): 68-77 . 百度学术
    3. 于金弘,伍鹤皋,石长征,孙海清,汪碧飞,李娇娜. 考虑管道自重荷载的埋地钢管结构计算方法. 长江科学院院报. 2024(05): 155-161 . 百度学术
    4. 朱珍锋,韩高孝. 沟埋式管道垂直土压力模拟试验研究. 水利与建筑工程学报. 2024(03): 99-106 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  352
  • HTML全文浏览量:  6
  • PDF下载量:  416
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-01-07
  • 发布日期:  2017-05-19

目录

    /

    返回文章
    返回