• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压实黄土增湿变形性质及其影响因素试验研究

杨玉生, 李靖, 邢义川, 赵建民

杨玉生, 李靖, 邢义川, 赵建民. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(4): 626-635. DOI: 10.11779/CJGE201704006
引用本文: 杨玉生, 李靖, 邢义川, 赵建民. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(4): 626-635. DOI: 10.11779/CJGE201704006
YANG Yu-sheng, LI Jing, XING Yi-chuan, ZHAO Jian-min. Experimental study on moistening deformation characteristics of compacted loess and their influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 626-635. DOI: 10.11779/CJGE201704006
Citation: YANG Yu-sheng, LI Jing, XING Yi-chuan, ZHAO Jian-min. Experimental study on moistening deformation characteristics of compacted loess and their influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 626-635. DOI: 10.11779/CJGE201704006

压实黄土增湿变形性质及其影响因素试验研究  English Version

基金项目: 国家自然科学基金项目(51679264,51209234,51379220,51509272); 国家重点基础研究发展计划(“973”计划)项目(2013CB036404)
详细信息
    作者简介:

    杨玉生(1980- ),男,博士,高级工程师,主要从事岩土工程科研和咨询工作。E-mail: yangysh@iwhr.com。

Experimental study on moistening deformation characteristics of compacted loess and their influencing factors

  • 摘要: 作为建筑材料的黄土在工程建设中大多经过压实处理,其增湿变形特性与工程安全密切相关。已有的对黄土增湿变形性质的研究,基本上是针对原状黄土开展的,对压实黄土较少涉及。通过双线法增湿湿陷试验,对压实黄土在增湿条件下的压缩及增湿变形性质进行了较系统的研究,并进行了压缩和湿陷变形影响因素的方差分析。结果表明:①随增湿含水率的增加,压实黄土的压缩性增大,湿陷性减小,压实度越小,这种效应越明显;不同压力下,湿陷变形对增湿的敏感性不同;②随增湿含水率的增加,增湿变形起始压力减小,增湿变形终止压力增大,增湿变形压力区间增大,可用增湿变形系数反映已有增湿水平下土体湿陷性的退化程度;③方差分析表明,相同增湿含水率下,压实黄土最终变形仅受最终压力的影响,加荷路径、浸水路径及两者的耦合对其影响很小;④未浸水饱和压缩时,密实度、初始含水率和压力,以及它们的交互作用均对压缩变形有显著影响,压力的影响最大,其次是密实度和初始含水率;与未浸水情况不同的是,浸水饱和压缩时初始含水率的影响很小;⑤增湿含水率、压力和密实度,以及它们的交互作用均显著影响压实黄土的湿陷性,其中增湿起始含水率的影响最大,密实度次之,压力最小。
    Abstract: As a building material, the loess is usually required to be compacted in engineering construction, thus the deformation characteristics of compacted loess with the increase of water content are closely related to the safety of the project. The compressible and collapsible deformations of the compacted loess with the increase of water content are studied using collapse tests carried out with the double line method, and their influencing factors are investigated by both single and multivariate analyses of variance. The research results indicate that: (1) With the increase of moistening water content, the compressibility of compacted loess increases, and the collapse property decreases; the smaller the degree of compaction, the more obvious the effect; the sensitivity of collapsible deformation to moistening water content is different under different pressures; (2) With the increase of moistening water content, the initial pressure of moistening collapse decreases, the termination pressure of moistening collapse increases, and the collapsible pressure range increases. The moistening collapsibility coefficient can be used to reflect the collapsibility degradation degree under the existing moistening water content; (3) The single and multivariate analyses of variance indicate that the final amount of deformation is affected mainly by the ultimate pressure, and the influences of loading path, immersion path and their coupling path are very small; (4) Three influencing factors of compaction degree, initial water content and pressure, and their interaction have significant influences on the compressible deformation; (5) Three influencing factors of compaction degree, initial water content and pressure, and their interaction have significant influences on the compressible deformation under unsaturated compression, and the influences of pressure are the largest, followed by the density and initial moistening water content; compared with those of the
  • [1] 张苏民, 郑建国. 湿陷性黄土(Q 3 )的增湿变形特征[J].岩土工程学报, 1990, 12(4): 21-31. (ZHANG Su-min,ZHENG Jian-guo. Moistening deformation characteristics of collapsible loess (Q 3 )[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 21-31. (in Chinese))
    [2] 郑建国, 张苏民. 湿陷性黄土在增湿时的强度特性[J]. 水文地质工程地质, 1989, 2: 6-10. (ZHENG Jian-guo, ZHANG Su-min. Strength characteristics of collapsible loess during moistening process[J]. Hydrogeology and Engineering Geology, 1989, 2: 6-10. (in Chinese))
    [3] 张苏民, 张 炜. 减湿和增湿时黄土的湿陷性[J]. 岩土工程学报, 1992, 14(1): 57-61. (ZHANG Su-min, ZHANG Wei. The collapsible characteristics of loess under the moistening and demoistening process[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 57-61. (in Chinese))
    [4] 张 炜. 新近堆积黄土增湿时的压缩变形和湿陷变形特性[C]// 中国土木工程学会第七届土力学及基础工程学术会议论文集. 北京, 1994: 236-239. (ZHANG Wei. Compressive deformation and deformation characteristics of the newly accumulated loess[C]// Proceedings of the Seventh Conference on Soil Mechanics and Foundation Engineering of China Civil Engineering Society. Beijing, 1994: 236-239. (in Chinese))
    [5] 张茂花, 谢永利, 刘保健. 增湿时黄土的抗剪强度特性分析[J]. 岩土力学, 2006, 27(7): 1195-1200. (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian. Analysis of shear strength characteristics of loess during moistening proess[J]. Rock and Soil Mechanics, 2006, 27(7): 1195-1200.(in Chinese))
    [6] 张茂花, 谢永利, 刘保健. 基于割线模量法的黄土增湿变形本构关系研究[J]. 岩石力学与工程学报, 2006, 25(3): 609-617. (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian. Stundy on constitutive relation of loess moistening deformation based on secant-modulus method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 609-617. (in Chinese))
    [7] 刘保健, 谢定义, 郭增玉. 黄土地基增湿变形的实用算法[J]. 岩土力学, 2004, 25(2): 270-274. (LIU Bao-jian, XIE Ding-yi, GUO Zeng-yu. A practical method for moistening deformation of loess foundation[J]. Rock and Soil Mechanics, 2004, 25(2): 270-274. (in Chinese))
    [8] 邢义川, 李京爽, 李 振. 湿陷性黄土与膨胀土的分级增湿变形特性试验研究[J]. 水利学报, 2007, 38(5): 546-551. (XING Yi-chuan, LI Jing-shuang, LI Zhen. Deformation characteristics of collapsible loess and expansive soil under the condition of wetted in stages[J]. Chinese Journal of Hydraulic Engineering, 2007, 38(5): 546-551. (in Chinese))
    [9] 刘金禹, 邢义川, 张爱军. 黄土增湿湿陷的非线性本构方程研究[J]. 西北农林科技大学学报 (自然科学版), 2011, 39(1): 210-214. (LIU Jin-yu, XING Yi-chuan, ZHANG Ai-jun. Study of non-linear constitutional equation for humidifying collapse loess[J]. Journal of Northwest A & F University (Nat Sci Ed), 2011, 39(1): 210-214. (in Chinese))
    [10] 邵生俊, 罗爱忠, 于清高, 等. 加荷增湿作用下Q 3 黏黄土的结构损伤特性[J]. 岩土工程学报, 2006, 28(12): 2077-2081. (SHAO Sheng-jun, LUO Ai-zhong, YU Qing-gao, et al. Structural damage properties of Q 3 loess under tri-axial loading and moistening[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2077-2081. (in Chinese))
    [11] 陈存礼, 高 鹏, 胡再强. 黄土的增湿变形特性及其与结构性的关系[J]. 岩石力学与工程学报, 2006, 25(7): 1352-1360. (CHEN Cun-li, GAO Peng, HU Zai-qiang. Moistening deformation characteristic of loess and its relationship to structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1352-1360. (in Chinese))
    [12] 陈 茜, 骆亚生, 程大伟. 黄土增湿特性的结构性定量化参数[J]. 武汉理工大学学报, 2011, 33(8): 104-107. (CHEN Qian, LUO Ya-sheng, CHENG Da-wei. Strunctural quantitative parameters reflecting humidification properties of loess[J]. Journal of Wuhan University of Technology, 2011, 33(8): 104-107. (in Chinese))
    [13] 张继文. 湿陷性黄土的增湿等效压力及其试验研究[C]// 岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集. 西安, 2002: 143-146. (ZHANG Ji-wen. Moistening equivalent pressure of collapsible loess and experimental study on it[C]// New Progress of Rock Mechanics and Geotechnical Engineering Problems in the Western Development- Proceedings of the Seventh Symposium on Rock Mechanics and Engineering Society of China. Xi'an, 2002: 143-146. (in Chinese))
    [14] 谢定义. 黄土力学特性与应用研究的过去, 现在与未来[J]. 地下空间, 1999, 19(4): 273-284. (XIE Ding-yi. The past, present and future of mechanical properties and applied research of loess[J]. Underground Space, 1999, 19(4): 273-284. (in Chinese))
    [15] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1): 3-13. (XIE Ding-yi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese))
    [16] 陈正汉, 许镇鸿, 刘祖典. 关于黄土湿陷的若干问题[J]. 土木工程学报, 1986, 19(3): 86-94. (CHEN Zheng-han, XU Zhen-hong, LIU Zu-dian. Some problems about the collapse of Loess[J]. Journal of Civil Engineering, 1986, 19(3): 86-94. (in Chinese))
    [17] 张茂花, 谢永利, 刘保健. 增 (减) 湿时黄土的湿陷系数曲线特征[J]. 岩土力学, 2005, 26(9): 1363-1368. (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian. Characteristics of collapsibility coefficient curves of loess during moistening and demoistening process[J]. Rock and Soil Mechanics, 2005, 26(9): 1363-1368. (in Chinese))
    [18] 刘明振. 湿陷性黄土间歇浸水试验[J]. 岩土工程学报, 1985, 7(1): 47-54. (LIU Min-zhen. Intermittent immersion test of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(1): 47-54. (in Chinese))
    [19] 毕 毅. 黄土地基湿陷性研究与工程应用中的若干问题[J]. 盐城工学院学报(自然科学版), 1999, 12(2): 36-38. (BI Yi. Some problems in the research and engineering application of collapsible loess foundation[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 1999, 12(2): 36-38. (in Chinese))
    [20] 关文章. 湿陷性黄土工程性能新编[M]. 西安: 西安交通大学出版社, 1992. (GUAN Wen-zhang. New collection of collapsible loess engineering properties[M]. Xi'an: Xi'an Jiaotong University Press, 1992. (in Chinese))
  • 期刊类型引用(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 . 百度学术
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 . 百度学术
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 . 百度学术
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 . 百度学术
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 . 百度学术
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 . 百度学术
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 . 百度学术
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 . 百度学术
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 . 百度学术
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 . 百度学术
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 . 百度学术
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 . 百度学术
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 . 百度学术
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 . 百度学术
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 . 百度学术
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 . 百度学术
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 . 百度学术
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 . 百度学术
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 . 百度学术
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 . 百度学术
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 . 百度学术
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 . 百度学术

    其他类型引用(43)

计量
  • 文章访问数:  438
  • HTML全文浏览量:  7
  • PDF下载量:  362
  • 被引次数: 65
出版历程
  • 收稿日期:  2016-01-16
  • 发布日期:  2017-05-19

目录

    /

    返回文章
    返回