• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑参数空间变异性的失稳边坡参数概率反分析

蒋水华, 魏博文, 黄劲松

蒋水华, 魏博文, 黄劲松. 考虑参数空间变异性的失稳边坡参数概率反分析[J]. 岩土工程学报, 2017, 39(3): 475-485. DOI: 10.11779/CJGE201703011
引用本文: 蒋水华, 魏博文, 黄劲松. 考虑参数空间变异性的失稳边坡参数概率反分析[J]. 岩土工程学报, 2017, 39(3): 475-485. DOI: 10.11779/CJGE201703011
JIANG Shui-hua, WEI Bo-wen, HUANG Jin-song. Probabilistic back analysis of slope failure considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 475-485. DOI: 10.11779/CJGE201703011
Citation: JIANG Shui-hua, WEI Bo-wen, HUANG Jin-song. Probabilistic back analysis of slope failure considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 475-485. DOI: 10.11779/CJGE201703011

考虑参数空间变异性的失稳边坡参数概率反分析  English Version

基金项目: 国家自然科学基金项目(51509125,51409139); 江西省教育厅科学技术研究项目(GJJ150033); 长江科学院开发研究基金项目(CKWV2015222/KY)
详细信息
    作者简介:

    蒋水华(1987- ),男,江西九江人,博士,讲师,主要从事岩土工程可靠度和风险控制方面的研究。E-mail: sjiangaa@ncu.edu.cn。

    通讯作者:

    魏博文,E-mail:bwwei@ncu.edu.cn

Probabilistic back analysis of slope failure considering spatial variability of soil properties

  • 摘要: 概率反分析能够有效地考虑岩土体参数不确定性并融合现场监测数据和观测信息等更新岩土体参数统计特征,进而使得边坡稳定性评价更为符合客观工程实际,然而目前参数概率反分析几乎没有考虑参数固有空间变异性的影响。结合多重响应面和子集模拟提出了考虑岩土体参数空间变异性的边坡参数概率反分析方法,并以芝加哥国会街切坡为例,融合边坡失稳和滑动面入滑点与出滑点的大致位置这两个现场观测信息,概率反分析得到边坡不排水抗剪强度参数的后验统计特征。结果表明:本文提出方法可以有效地解决考虑参数空间变异性的低概率水平边坡参数概率反分析问题,具有较高的计算效率。子集模拟中每层随机样本数目对计算结果具有重要的影响,常用的500组样本点难以获得满意的计算结果。此外,土体参数空间变异性对概率反分析计算结果具有重要的影响,考虑参数空间变异性边坡参数由平稳随机场更新为非平稳随机场,与工程实际相符,然而忽略参数空间变异性更新后的参数仍服从平稳分布。
    Abstract: The statistics of uncertain rock and soil parameters can be updated with the information from different sources such as in-situ measurements and field observations via probabilistic back analysis, which can be further used for more realistic slope stability assessment. However, the inherent spatial variability of soil properties is almost not incorporated in the current probabilistic back analyses. This paper proposes an efficient approach by integrating multiple response-surface with subset simulation for probabilistic back analysis of slope failure in spatially variable soils. The Congress Street cut in Chicago with two important field observations including slope failure and approximate entry and exit regions of potential slip surfaces is taken as an example, and the posterior statistics of undrained shear strengths in three clay layers are estimated using the proposed approach. The results indicate the proposed approach can effectively back-analyze the posterior statistics of spatially varying soil properties at low-probability levels. The number of samples (Nl) in each intermediate step of subset simulation has an important effect on the posterior statistics of soil parameters, and the common choice of Nl = 500 cannot yield satisfactory results in general. In addition, the spatial variability of soil properties affects the posterior statistics of soil parameters significantly. The updated soil parameters follow non-stationary distributions in the slope profile when the spatial variability of soil properties is considered, which is in good accordance with geotechnical practice, while they still follow stationary distributions if the spatial variability of soil properties is ignored.
  • [1] 陈祖煜. 土质边坡稳定性分析—原理、方法、程序[M]. 北京: 中国水利水电出版社, 2003. (CHEN Zu-yu. Stability analysis of soil slopes: theory, method and program[J]. Beijing: China Water & Power Press, 2003. (in Chinese))
    [2] HONJO Y, LIU WEN T, SOUMITRA G. Inverse analysis of an embankment on soft clay by extended Bayesian method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(10): 709-734.
    [3] DENG J H, LEE C F. Displacement back analysis for a steep slope at the Three Gorges Project site[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 259-268.
    [4] 陈方方, 李 宁, 张志强, 等. 岩土工程反分析方法研究现状与若干问题探讨[J]. 水利与建筑工程学报, 2006, 4(3): 54-58. (CHEN Fang-fang, LI Ning, ZHANG Zhi-qiang, et al. Actualities and problems of back analysis method in geotechnical engineering[J]. Chinese Journal of Water Resources and Architectural Engineering, 2006, 4(3): 54-58. (in Chinese))
    [5] 黄宏伟, 孙 钧. 基于Bayesian广义参数反分析[J]. 岩石力学与工程学报, 1994, 13(3): 219-228. (HUANG Hong-wei, SUN Jun. Generalized parameters back analysis method based on Bayesian theory[J]. Chinese Journal of Rock Mechanics and Engineering, 1994, 13(3): 219-228. (in Chinese))
    [6] GILBERT R B, WRIGHT S G, LIEDTKE E. Uncertainty in back analysis of slopes: Kettleman Hills case history[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1167-1176.
    [7] 刘世君, 徐卫亚, 王红春, 等. 岩石力学参数的区间参数摄动反分析方法[J]. 岩土工程学报, 2002, 24(6): 760-763. (LIU Shi-jun, XU Wei-ya, WANG Hong-chun, et al. Interval parameter perturbation back analysis on mechanical parameter of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 760-763. (in Chinese))
    [8] 杨令强, 马 静, 张社荣. 抗滑桩加固边坡的稳定可靠度分析[J]. 岩土工程学报, 2009, 31(8): 1299-1302. (YANG Ling-qiang, MA Jing, ZHANG She-rong. Interval papameter perturbation back analysis on mechanical parameter of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302. (in Chinese))
    [9] ZHANG J, TANG W H, ZHANG L M. Efficient probabilistic back-analysis of slope stability model parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 99-109.
    [10] ZHANG L L, ZHANG J, ZHANG L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7): 905-912.
    [11] JUANG C H, LUO Z, ATAMTURKTUR S, et al. Bayesian updating of soil parameters for braced excavations using field observations[J]. Journal of Geotechnical and Geo- environmental Engineering, 2012, 139(3): 395-406.
    [12] 张社荣, 王 超, 孙 博. Bayes约束随机场下坝基溶蚀区随机模拟方法及其影响分析[J]. 岩土力学, 2013, 34(8): 2337-2346. (ZHANG She-rong, WANG Chao, SUN Bo. Stochastic simulation and influence analysis of dissolution dam foundation under Bayes constraint random field[J]. Rock and Soil Mechanics, 2013, 34(8): 2337-2346. (in Chinese))
    [13] 左自波, 张璐璐, 程 演, 等. 基于MCMC法的非饱和土渗流参数随机反分析[J]. 岩土力学, 2013, 34(8): 2393-2400. (ZUO Zi-bo, ZHANG Lu-lu, CHENG Yan, et al. Probabilistic back analysis of unsaturated soil seepage parameters based on Markov chain Monte Carlo method[J]. Rock and Soil Mechanics, 2013, 34(8): 2393-2400. (in Chinese))
    [14] WANG L, HWANG J H, LUO Z, et al. Probabilistic back analysis of slope failure: a case study in Taiwan[J]. Computers and Geotechnics, 2013, 51: 12-23.
    [15] PENG M, LI X Y, LI D Q, et al. Slope safety evaluation by integrating multi-source monitoring information[J]. Structural Safety, 2014, 49: 65-74.
    [16] LI X Y, ZHANG L M, JIANG S H. Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 252-261.
    [17] 伍宇明, 兰恒星, 高 星, 等. 一种基于贝叶斯理论的区域斜坡稳定性评价模型[J]. 工程地质学报, 2014, 22(6): 1227-1233. (WU Yu-ming, LAN Heng-xing, GAO Xing, et al. Bayes theory based model for regional slope stability analysis[J]. Chinese Journal of Engineering Geology, 2014, 22(6): 1227-1233. (in Chinese))
    [18] KELLY R, HUANG J. Bayesian updating for one- dimensional consolidation measurements[J]. Canadian Geotechnical Journal, 2015, 52(9): 1318-1330.
    [19] LI S, ZHAO H, RU Z, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope[J]. Engineering Geology, 2016, 203: 178-190.
    [20] ASAOKA A, A-GRIVAS D. Spatial variability of the undrained strength of clays[J]. Journal of the Geotechnical Engineering Division, 1982, 108(5): 743-756.
    [21] PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624.
    [22] PAPAIOANNOU I, STRAUB D. Reliability updating in geotechnical engineering including spatial variability of soil[J]. Computers and Geotechnics, 2012, 42: 44-51.
    [23] BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1951, 13(1): 1-45.
    [24] WONG F S. Slope reliability and response surface method[J]. Journal of Geotechnical Engineering, 1985, 111(1): 32-53.
    [25] LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60-72.
    [26] JIANG S H, HUANG J S. Efficient slope reliability analysis at low-probability levels in spatially variable soils[J]. Computers and Geotechnics, 2016, 75: 18-27.
    [27] STRAUB D, PAPAIOANNOU I. Bayesian updating with structural reliability methods[J]. Journal of Engineering Mechanics, 2015, 141(3): 04014134.
    [28] PHOON K K, HUANG S P, QUEK S T. Implementation of Karhunen-Loève expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    [29] AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
    [30] IRELAND H O. Stability analysis of the Congress Street open cut in Chicago[J]. Géotechnique, 1954, 4(4): 163-168.
    [31] OKA Y, WU T H. System reliability of slope stability[J]. Journal of Geotechnical Engineering, 1990, 116(8): 1185-1189.
    [32] CHOWDHURY R N, XU D W. Geotechnical system reliability of slopes[J]. Reliability Engineering & System Safety, 1995, 47(3): 141-151.
    [33] CHING J, PHOON K K, HU Y G. Efficient evaluation of reliability for slopes with circular slip surfaces using importance sampling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 768-777.
    [34] CHOWDHURY R, RAO B N. Probabilistic stability assessment of slopes using high dimensional model representation[J]. Computers and Geotechnics, 2010, 37(7): 876-884.
    [35] ZHANG J, HUANG H W, PHOON K K. Application of the Kriging-based response surface method to the system reliability of soil slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 651-655.
    [36] LI D Q, ZHENG D, CAO Z J, et al. Response surface methods for slope reliability analysis: Review and comparison[J]. Engineering Geology, 2016, 203: 3-14.
    [37] 蒋水华, 祁小辉, 曹子君, 等. 基于随机响应面法的边坡系统可靠度分析[J]. 岩土力学, 2015, 36(3): 809-818. (JIANG Shui-hua, QI Xiao-hui, CAO Zi-jun, et al. System reliability analysis of slope using stochastic response surface method[J]. Rock and Soil Mechanics, 2015, 36(3): 809-818. (in Chinese))
    [38] 蒋水华, 李典庆, 周创兵, 等. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3): 508-518. (JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, et al. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. (in Chinese))
    [39] CHRISTIAN J T, LADD C C, BAECHER G B. Reliability applied to slope stability analysis[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2180-207.
计量
  • 文章访问数:  414
  • HTML全文浏览量:  15
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-13
  • 发布日期:  2017-04-24

目录

    /

    返回文章
    返回