• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于管土接触特性的顶进力计算模型分析

张鹏, 马保松, 曾聪, 谈力昕

张鹏, 马保松, 曾聪, 谈力昕. 基于管土接触特性的顶进力计算模型分析[J]. 岩土工程学报, 2017, 39(2): 244-249. DOI: 10.11779/CJGE201702007
引用本文: 张鹏, 马保松, 曾聪, 谈力昕. 基于管土接触特性的顶进力计算模型分析[J]. 岩土工程学报, 2017, 39(2): 244-249. DOI: 10.11779/CJGE201702007
ZHANG Peng, MA Bao-song, ZENG Cong, TAN Li-xin. Numerical model for jacking force based on pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 244-249. DOI: 10.11779/CJGE201702007
Citation: ZHANG Peng, MA Bao-song, ZENG Cong, TAN Li-xin. Numerical model for jacking force based on pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 244-249. DOI: 10.11779/CJGE201702007

基于管土接触特性的顶进力计算模型分析  English Version

基金项目: 交通运输部项目(201331J11300)
详细信息
    作者简介:

    张 鹏(1988- ),男,博士研究生,主要从事非开挖和管道工程等领域的科研工作。E-mail:cugpengzhang@163.com。

    通讯作者:

    马保松,E-mail:mabaosong@163.com

Numerical model for jacking force based on pipe-soil contact characteristics

  • 摘要: 顶进力是顶管工程中管道结构设计、顶管机选型和工作井结构设计的决定性参数之一。为了更加准确地计算顶进力,假设泥浆压力作用下孔壁保持稳定,管道与孔壁土体发生部分接触,采用协调表面Persson接触模型分析管土接触角度和接触压力分布规律,在此基础上考虑管浆摩阻力影响推导出相应的顶进力计算公式。结果表明:管土接触角度和接触压力分布受管道和地层力学参数影响,软土层中管土接触角度可近似取180°定值,接触压力合力约为管道自重的1.35倍;当管道与岩层力学性质接近时,管土接触趋于点接触状态,接触压力的合力为管道自重,且工程实测顶进力与公式预测值相一致,证明其具有适用性。
    Abstract: Jacking force is one of the crucial parameters to decide design of pipe structure, selection of pipe jacking meachines and design of shaft structure for jacking projects. In order to more accurately calculate the jacking force, it is assumed that the excavation tunnel is stable under mud pressure and partial contact occurs between pipe and soil of hole wall. The Persson contact model for coordinated surface is used to analyze contact angle of pipe-soil surface and distribution of contact pressure. On this basis, the formula for calculating the jacking force is deduced considering influence of friction resistance between pipe and mud concurrently. The results show that the contact angle of pipe-soil and the distribution of contact pressure are affected by the mechanical parameters of pipe and formation excavated. The contact angle approximatively tends to be constant value of 180°, and the resulting force of contact pressure is about 1.35 times the pipe weight for jacking in soft soil. When the mechanical properties of pipe and rock are close to each other, the pipe and rock tend to be point contact state. The resulting force of contact pressure is equal to the pipe weight. The jacking force measured during jacking process is consistent with that predicted by the proposed formula, and its applicability is proved.
  • [1] MILLIGAN G W E, NORRIS P. Pipe-soil interaction during pipe jacking[J]. Proceedings of the ICE-Geotechnical Engineering, 1999, 137(1): 27-44.
    [2] HASLEM R F. Pipe-jacking forces: from practice to theory[C]// Proceedings of ICE North Western Association Centenary Conference in Infrastructure Renovation and Waste Control. Manchester: Manstock, 1986: 173.
    [3] KHAZAEI S, SHIMADA H, MATSUI K. Analysis and prediction of thrust in using slurry pipe jacking method[J]. Abstract Tunnelling and Underground Space Techonlogy, 2004, 19(4/5): 356-356.
    [4] O’REILLY, M P, ROGERS, C D F. Pipe jacking forces[C]// Proceedings of International Conference on Foundations and Tunnels. Edinburgh: Engineering Technics Press, 1987: 201.
    [5] SOFIANOS A I, LOUKAS P, CHANTZAKOS C. Pipe jacking a sewer under Athens[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 193-203.
    [6] GB50268—2008给水排水管道工程施工及验收规范[S]. 2008. (GB50268—2008 Code for construction and acceptance of water and sewerage pipeline works[S]. 2008. (in Chinese))
    [7] CECS246—2008 给水排水工程顶管技术规程[S]. 2008. (CECS246—2008 Technical specification for pipe jacking of water supply and sewerage engineering[S]. 2008. (in Chinese))
    [8] 日本推進技術協会. 推進工法体系[M]. 东京: 日本推進技術協会, 2013. (Japan Micro Tunneling Association. Pipe-jacking application[M]. Tokyo: Japan Micro Tunneling Association, 2013. (in Japanese))
    [9] TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943: 66-76.
    [10] 叶艺超, 彭立敏, 杨伟超, 等. 考虑泥浆触变性的顶管顶力计算方法[J]. 岩土工程学报, 2015, 37(9): 1653-1659. (YE Yi-chao, PENG Li-min, YANG Wei-chao, et al. Calculation of jacking force for pipe-jacking considering mud slurry thixotropy[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1653-1659. (in Chinese))
    [11] MILLIGAN G W E, NORRIS P. Site-based research in pipe jacking: objectives, procedures and a case history[J]. Tunnelling and Underground Space Technology, 1996, 11: 3-24.
    [12] PELLET-BEAUCOUR A L, KASTNER R. Experimental and analytical study of friction forces during microtunneling operations[J]. Tunnelling and Underground Space Technology, 2002, 17(1): 83-97.
    [13] BARLA M, CAMUSSO M, AIASSA S. Analysis of jacking forces during microtunnelling in limestone[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 668-683.
    [14] CIAVARELLA M, DECUZZI P. The state of stress induced by the plane frictionless cylindrical contact: the case of elastic similarity[J]. International Journal of Solids and Structures, 2001, 38(26): 4507-4523.
    [15] GB50010—2010 混凝土结构设计规范[S]. 2010. (GB50010—2010 Code for design of concrete structures[S]. 2010. (in Chinese))
    [16] STEIN D, MÖLLERS K, BIELECKI, R. Microtunneling installation and renewal of nonman-size supply and sewage lines by the trenchless construction method[M]. Berlin: Ernst & Sohn, 1989.
计量
  • 文章访问数:  565
  • HTML全文浏览量:  10
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-01
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回