• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

空洞对盾构隧道结构受力与破坏影响模型试验研究

王士民, 于清洋, 彭博, 申兴柱

王士民, 于清洋, 彭博, 申兴柱. 空洞对盾构隧道结构受力与破坏影响模型试验研究[J]. 岩土工程学报, 2017, 39(1): 89-98. DOI: 10.11779/CJGE201701007
引用本文: 王士民, 于清洋, 彭博, 申兴柱. 空洞对盾构隧道结构受力与破坏影响模型试验研究[J]. 岩土工程学报, 2017, 39(1): 89-98. DOI: 10.11779/CJGE201701007
WANG Shi-min, YU Qing-yang, PENG Bo, SHEN Xing-zhu. Model tests on influences of cavity defects on mechanical characteristics and failure laws of segment linings of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 89-98. DOI: 10.11779/CJGE201701007
Citation: WANG Shi-min, YU Qing-yang, PENG Bo, SHEN Xing-zhu. Model tests on influences of cavity defects on mechanical characteristics and failure laws of segment linings of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 89-98. DOI: 10.11779/CJGE201701007

空洞对盾构隧道结构受力与破坏影响模型试验研究  English Version

基金项目: 国家自然科学基金面上项目(51278424); 中央高校基本科研业务费专项资金项目(2682014CX070); 国家自然科学基金青年基金项目(50908194)
详细信息
    作者简介:

    王士民(1978-),男,博士,副教授,主要从事盾构隧道衬砌结构理论分析及耐久性研究方面的工作。E-mail: wangshimin@home.swjtu.edu.cn。

Model tests on influences of cavity defects on mechanical characteristics and failure laws of segment linings of shield tunnels

  • 摘要: 通过将渐进性破坏理论应用到盾构隧道管片衬砌结构病害(尤其是管片开裂)产生的破坏分析中,采用相似模型试验方法,通过超载的形式从管片衬砌结构内力及位移、声发射信息、管片破坏过程方面,分析地层空洞缺陷对盾构隧道管片从材料细观损伤到结构宏观局部破坏再到结构整体失稳的整个渐进性破坏失稳过程的影响。试验结果表明:空洞缺陷的存在对衬砌结构的极限承载能力及破坏模式具有显著影响,首先是会降低管片失稳临界点对应荷载值,临界点对应的最大位移值与隧道半径比值减小,其次降低管片结构开始出现宏观裂缝时的荷载值;对于空洞的分布位置,拱肩位置空洞的存在更容易导致结构的失稳,其次拱腰和拱顶;空洞的存在也会改变衬砌结构失稳起始位置的分布,导致失稳起始位置接近或直接位于空洞位置。
    Abstract: By using the method of model tests and introducing the progressive failure theory into the analysis of disease occurrence and propagation of segment linings of shield tunnels, from the internal force, structural displacement, acoustic emission signals and process of crack occurrence and extension, a comparative study on the influences of cavities behind linings under extreme loading conditions is carried out. The results show that the existence of the cavities has significant influences on the ultimate bearing capacity and failure laws of shield tunnels. First, it decreases the corresponding load at the critical point. Meanwhile the ration of the maximum displacement to the tunnel radius under this load also decreases. Secondly, the load of starting to induce macroscopic crack is lowered. For different cavity locations, the cavities located at spandrel are more likely to result in instability of the structure than those at hance and vault. The cavities may also change the starting location of instability of the structure, leading to that the position of instability is near or in the cavities directly.
  • [1] 何 川, 张志强, 肖明清. 水下隧道[M]. 成都: 西南交通大学出版社, 2011. (HE Chuan, ZHUANG Zhi-qiang, XIAO Ming-qing. Underwater tunnel[M]. Chengdu: Southwest Jiaotong University Press, 2011. (in Chinese))
    [2] 张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. (ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(S1): 303-309. (in Chinese))
    [3] 张成平, 冯 岗, 张 旭, 等. 衬砌背后双空洞影响下隧道结构的安全状态分析[J]. 岩土工程学报, 2015, 37(3): 487-493. (ZHANG Cheng-ping, FEGN Gang, ZHANG Xu, et al. Effect of double voids behind lining on safety state of tunnel structures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 487-493. (in Chinese))
    [4] WANG J F, HUANG H W, XIE X Y, et al. Void-induced liner deformation and stress redistribution[J]. Tunneling and Underground Space Technology, 2014, 40(2): 263-276.
    [5] 张顶立, 张素磊, 房 倩, 等. 铁路运营隧道衬砌背后接触状态及其分析[J]. 岩石力学与工程学报, 2013, 32(2): 217-224. (ZHANG Ding-li, ZHANG Su-lei, FANG Qian, et al. Study of contact state behind tunnel lining in process of railway operation and its analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 217-224. (in Chinese))
    [6] 应国刚, 张顶立, 陈立平, 等. 荷载结构模型在拱顶空洞存在情况下的修正[J]. 土木工程学报, 2015, 48(增刊1): 181-185. (YING Guo-gang, ZHANG Ding-li, CHEN Li-ping, et al. Amendment of load-structure model with voids behind tunnel lining at vault [J]. China Civil Engineering Journal, 2015, 48(S1): 181-185. (in Chinese))
    [7] 陈俊涛. 围岩拱顶空洞对隧道稳定性影响规律研究[D]. 重庆: 重庆交通大学, 2012. (CHEN Jun-tao. Study on the tunnels stability influence of caverns in arch in surrounding rock[D]. Chongqing: Chongqing Jiaotong University, 2012. (in Chinese))
    [8] 李 明, 陈洪凯, 熊峰伟. 隧道衬砌背后空洞健康判据试验研究[J]. 重庆交通大学学报(自然科学版), 2011, 30(3): 398-402. (LI Ming, CHEN Hong-kai, XIONG Feng-wei. Test research on health criterion of cavities behind the lining[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(3): 398-402. (in Chinese))
    [9] 朱春生, 杨晓华, 来弘鹏. 公路隧道衬其背后空洞对结构安全的影响[J]. 长安大学学报(自然科学版), 2010, 30(5): 63-68. (ZHU Chun-sheng, YANG Xiao-hua, LAI Hong-peng. Impact of empty hole behind empress tunnel lining on structure safety[J]. Journal of Chang'an University (Natural Science Edition), 2010, 30(5): 63-68. (in Chinese))
    [10] 刘新荣, 舒志乐, 朱成红, 等. 隧道衬砌空洞探地雷达三维探测正演研究[J]. 岩石力学与工程学报, 2010, 29(11): 2221-2229. (LIU Xin-rong, SHU Zhi-le, ZHU Cheng-hong, et al. Study of forward simulation for ground penetrating radar three-dimendional detection of tunnel lining cavity[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2221-2229. (in Chinese))
    [11] 崔文燕, 宋 建, 刘 宇, 等. 不同位置空洞对隧道衬砌的力学行为分析[J]. 水利与工程学报, 2011, 9(5): 70-73. (CUI Wen-yan, SONG Jian, LIU Yu, et al. Analysis for mechanical properties of empty hole in different positions on tunnel lining[J]. Journal of Water Resources and Architectural Engineering, 2011, 9(5): 70-73. (in Chinese))
    [12] 彭 跃, 王桂林, 张永兴, 等. 衬砌背后空洞对在役隧道结构安全性影响研究[J]. 地下空间与工程学报, 2008, 4(6): 1101-1104. (PENG Yue, WANG Gui-lin, ZHANG Yong-xing, et al. Research about effect of cavity behind ling on structure safety of tunnel in active service[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(6): 1101-1104. (in Chinese))
    [13] 佘 健, 何 川, 汪 波, 等. 衬砌背后空洞对隧道结构承载力影响的模型试验研究[J]. 公路交通科技, 2008, 25(1): 105-110. (SHE Jian, HE Chuan, WANG Bo, et al. Study on effect of cavities behind linings on bearing capacity of tunnel structure by model test[J]. Journal of Highway and Transportation Research and Development, 2008, 25(1): 105-110. (in Chinese))
    [14] 何 川, 张建刚, 苏宗贤. 大断面水下盾构隧道结构力学特性研究[M]. 北京: 科学出版社, 2010. (HE Chuan, ZHANG Jian-gang, SU Zong-xian. The mechanical properties of underwater shield tunnel structures with large cross-sections[M]. Beijing: Science Press, 2010. (in Chinese))
    [15] 刘 炽. 盾构隧道管片病害安全评估及背后空洞注浆影响规律研究[D]. 西安: 长安大学, 2014. (LIU Zhi. Safety assessment of shield tube disease and the influence of cavity grouting behind tube[D]. Xi'an: Chang'an University, 2014. (in Chinese))
    [16] MEGUID M A, DANG H K. The effect of erosion voids on existing tunnel linings[J]. Tunneling and Underground Space Technology, 2009, 24(3): 278-286.
    [17] LEUNG C, MEGUID M A. An experimental study of the effect of local contact loss on the earth pressure distribution on existing tunnel linings[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 139-145.
    [18] 地盘工学会.シールドトンネルの新技術[M]. 东京: 土木学社, 1998. (Research Association on New Shield Tunnology. New technology in shield tunneling[M]. Tokyo: Kajima Institute Publishity Co. Ltd. 1998. (in Japanese))
    [19] 王士民, 徐国文, 何 薇, 等. 盾构隧道管片衬砌力学试验模型: 中国, ZL201320059555.4[P]. 2013. (WANG Shi-min, XU Guo-wen, HE Wei. Model test of shield-tunnel segment lining: China, ZL201320059555.4[P]. 2013. (in Chinese))
计量
  • 文章访问数:  442
  • HTML全文浏览量:  6
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-16
  • 发布日期:  2017-01-24

目录

    /

    返回文章
    返回