• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩石拉伸破坏机制与应力波谱特征

张伯虎, 刘玮丰, 邓建辉, 刘建锋

张伯虎, 刘玮丰, 邓建辉, 刘建锋. 岩石拉伸破坏机制与应力波谱特征[J]. 岩土工程学报, 2016, 38(z2): 336-341. DOI: 10.11779/CJGE2016S2055
引用本文: 张伯虎, 刘玮丰, 邓建辉, 刘建锋. 岩石拉伸破坏机制与应力波谱特征[J]. 岩土工程学报, 2016, 38(z2): 336-341. DOI: 10.11779/CJGE2016S2055
ZHANG Bo-hu, LIU Wei-feng, DENG Jian-hui, LIU Jian-feng. Damage mechanism and stress wave spectral characteristics of rock under tension[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 336-341. DOI: 10.11779/CJGE2016S2055
Citation: ZHANG Bo-hu, LIU Wei-feng, DENG Jian-hui, LIU Jian-feng. Damage mechanism and stress wave spectral characteristics of rock under tension[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 336-341. DOI: 10.11779/CJGE2016S2055

岩石拉伸破坏机制与应力波谱特征  English Version

基金项目: 水力学与山区河流开发保护国家重点实验室开放基金项目(SKHL1424); 博士后基金项目(2015M582768XB)
详细信息
    作者简介:

    张伯虎(1978- ),男,副教授,主要从事深部岩土体性能理论及监测研究工作。E-mail: zbh_cd@126.com。

Damage mechanism and stress wave spectral characteristics of rock under tension

  • 摘要: 岩石材料的受拉性能远不及受压性能好,其受拉的破坏机制决定着岩石工程的稳定性与安全性。为研究岩石材料受拉损伤破坏机制,通过振动理论和间接拉伸条件下声发射试验分析花岗岩损伤演化过程,并通过分形理论以及声发射信号的主频和能量分布特征来获得拉伸破坏机理。从声发射事件分布来看,当加载应力达到抗拉强度时岩样瞬间破坏,声发射事件数急剧增大,反映出明显的脆性性能。声发射事件的分形维数也随着加载应力增大而减小。间接拉伸破坏全过程声发射信号的主频集中在175~250 kHz和50~100 kHz两个频率范围,声发射信号的能量集中分布在0~312.5 kHz频段,占信号总能量的80%以上。其拉伸应力波特征和分形机理能够反映岩石材料的基本力学性能,对更进一步研究岩石的性能、增强岩石工程的安全性有重要的实验和理论意义。
    Abstract: The tensile property of rock is much worse than its compression performance, and the damage mechanism under tension determines the stability and safety of rock engineering. To study the tensile damage mechanism of rock, the vibration theory and acoustic emission (AE) signal tests under indirect tensile conditions are used to analyze the damage evolution process of granite. The tensile damage mechanism is obtained by using the fractal theory and the distribution of dominant frequencies and energies of AE signals. Based on the distribution of AE events, damage is instantaneous and the number of AE events sharply increases when the loading stress reaches its ultimate tensile strength (UTS), reflecting apparently brittle performance. The fractal dimension of AE events decreases as the loading stress increases. The dominant frequencies of AE signals at the indirect tensile stage are mainly concentrated at 175~250 kHz and 50~100 kHz. Their energies are intensively distributed in the band width of 0~312.5KHz. The stress wave characteristics and fractal mechanism can reflect the basic mechanical property of rock. They are of important experimental and theoretical significance for further studies on rock performance and enhancing the safety of rock engineering.
  • [1] KAISER J. A study of acoustic phenomena in tensile tests[D]. Technische Hochschule Munched, FRG, 1950.
    [2] MOGI K. Study of elastic cracks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena[J]. Bulletin of the Earthquake Research Institute, 1962, 40: 125-173.
    [3] RUDAJEV V, VILHELM J, LOKAJICEK T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure[J]. Int J Rock Mech& Min Sci, 2000, 37(4): 699-704.
    [4] PESTMAN B J, VAN MUNSTER J G. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1996, 33(6): 585-593.
    [5] 勝山邦久. 声发射(AE)技术的应用[M]. 冯夏庭, 译. 北京: 冶金工业出版社, 1996. (KATSUYAMA K. Application of AE techniques[M]. FENG Xia-ting, tran. Beijing: Metallurgy Industry Press, 1996. (in Chinese))
    [6] DAI S T, LABUZ J F. Damage and failure analysis of brittle materials by acoustic emission[J]. Journal of Material in Civil Engineering, 1997, 9(4): 200-205.
    [7] COX S J D, MEREDITH P G. Microcrack formation and material softening in rock measured by monitoring acoustic emissions[J]. Int J rock Mech Min Sci & Geomech Abstr, 1993, 30(1): 11-24.
    [8] 秦四清, 李造鼎, 张倬元, 等. 岩石声发射技术概论[M]. 成都: 西南交通大学出版社, 1993. (QIN Si-qing, LI Zao-ding, ZHANG Zhuo-yuan, et al. An introduction to acoustic emission techniques in rocks[M]. Chengdu: Southwest Jiaotong University Press, 1993. (In Chinese))
    [9] 张志雄. 岩石直接拉伸与压缩变形特性的试验研究[D]. 昆明理工大学, 2008. (ZHANG Zhi-xiong. Experimental research on deformation behavior of rocks in direct tension and compression[D]. Kunming University of Science and Technology, 2008. (in Chinese))
    [10] 喻 勇, 张宗贤, 俞 洁, 等. 岩石直接拉伸破坏中的能量耗散及损伤特征[J]. 岩石力学与工程学报, 1998, 17(4): 38-44. (YU Yong, ZHANG Zong-xian, YU Jie, et al. Energy dissipation and damage characters in rock direct tensile destruction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(4): 38-44. (in Chinese))
    [11] 梁正召, 唐春安, 张永彬, 等. 岩石直接拉伸破坏过程及其分形特征的三维数值模拟研究[J]. 岩石力学与工程学报, 2008, 27(7): 1402-1410. (LIANG Zheng-zhao, TANG Chun-an, ZHANG Yong-bin, et al. Three-dimensional numerical study of direct tensile fracture of rock and associated fractal[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1402-1410. (in Chinese))
    [12] 周小平, 张永兴, 哈秋舲, 等. 单轴拉伸条件下细观非均匀性岩石变形局部化分析及其应力-应变全过程研究[J]. 岩石力学与工程学报, 2004, 23(1): 1-6. (ZHOU Xiao-ping, ZHANG Yong-xing, HA Qiu-ling, et al. Analyses on strain localization and complete stress-strain relation of mesoscopic rock under uniaxial tension[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 1-6. (in Chinese))
    [13] THAM L G, LIU H, TANG C A, et al. On tension failure of 2-D rock specimens and associated acoustic emission[J]. Rock Mech Rock Engng, 2005, 38(1): 1-19.
    [14] 付军辉, 黄炳香, 刘长友, 等. 煤试样巴西劈裂的声发射特征研究[J]. 煤炭科学技术, 2011, 39(4): 25-28. (FU Jun-hui, HUANG Bing-xiang, LIU Chang-you, et al. Study on acoustic emission features of coal sample in Brazilian splitting[J]. Coal Science and Technology, 2011, 39(4): 25-28. (in Chinese))
    [15] 刘建锋, 徐进, 杨春和, 等. 盐岩拉伸破坏力学特性的试验研究[J]. 岩土工程学报, 2011, 33(4): 580-586. (LIU Jian-feng, XU Jin, YANG Chun-he, et al. Mechanical characteristics of tensile failure of salt rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 580-586. (in Chinese))
    [16] 周瑶琪, 王爱国, 陈 勇, 等. 岩石压裂过程中的声发射信号研究[J]. 中国矿业, 2008, 17(2): 94-97. (ZHOU Yao-qi, WANG Ai-guo, CHEN Yong, et al. Research on acoustic emission of rock fracture[J]. China Mining Magazine, 2008, 17(2): 94-97. (in Chinese))
    [17] 刘新平, 刘 英, 陈 顒. 单轴压缩条件下岩石样品声发射信号的频谱分析[J]. 声学学报, 1986, 11(2): 80-87. (LIU xin-ping, LIU Ying, CHEN Yong. Spectral analysis of acoustic emissions of rock specimen during uniaxial compression[J]. Acta Acustica, 1986, 11(2): 80-87. (in Chinese))
    [18] 刘建伟, 吴贤振, 刘祥鑫, 等. 不同岩石脆性破坏声发射时频特性及信号识别[J]. 有色金属科学与工程, 2013, 4(6): 73-77. (LIU Jian-wei, WU Xian-zhen, LIU Xiang-xin, et al. Time -frequency characteristic and signal recognition of acoustic emission generated from different rock brittle failure[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 73-77. (in Chinese))
    [19] 牛滨华, 孙春岩. 半空间介质与地震波传播[M]. 北京: 石油工业出版社, 2002. (NIU Bin-hua, SUN Chun-yan. Half-space medium and seismic wave propagation[M]. Beijing: Petroleum Industry Press, 2002. (in Chinese))
    [20] 李建功. 应力波在弹塑性煤岩体中传播衰减规律研究[D]. 青岛: 山东科技大学, 2008. (LI Jian-gong. Study on the stress wave propagation attenuation laws in the elastoplastic coal rock[D]. Qingdao: Shandong University of Science and Technology, 2008. (in Chinese))
    [21] 刘习军, 贾启芬, 张文德. 工程振动与测试技术[M]. 天津: 天津大学出版社, 1999. (LIU Xi-jun, JIA Qi-fen, ZHANG Wen-de. Engineering vibration and testing techniques[M]. Tianjin: Tianjin University Press, 1999. (in Chinese))
    [22] HITATA T, SATOH T, ITO K. Fractal structure of spatial distribution of microfracturing in rock[J]. Geophysical Journal International-Geophys Jint, 1987, 90(2): 369-374.
    [23] 凌同华, 李夕兵. 多段微差爆破振动信号频带能量分布特征的小波包分析[J]. 岩石力学与工程学报, 2005, 24(7): 1117-1122. (LING Tong-hua, LI Xi-bing. Analysis of energy distributions of millisecond blast vibration signals using the wavelet packet method[J]. Chinese Journal of rock Mechanics and Engineering, 2005, 24(7): 1117-1122. (in Chinese))
  • 期刊类型引用(7)

    1. 胡亚元,袁书行. 盐溶液饱和岩土的本构理论及在黏土中的应用. 岩土工程学报. 2024(02): 223-234 . 本站查看
    2. 赵兴东. 黄金矿山深井开采研究进展与发展趋势. 黄金. 2024(08): 1-18 . 百度学术
    3. 张菂,李源,张伟,赵伟乔,秦忠培,郭少峰. 2023年8月西代村跨断层短水准异常分析. 地震地磁观测与研究. 2024(06): 83-91 . 百度学术
    4. 张根宝,张超,白允,杨楚卿. 空隙岩石非线性变形细观唯象分析及本构模型. 公路交通科技. 2023(02): 135-144 . 百度学术
    5. 贺文海,王恒,赵佳鑫. 矿井辅助运输巷道底板数学模型构建及其力学特性研究. 煤炭技术. 2023(08): 17-21 . 百度学术
    6. 胡亚元,周焕慧. 饱和块状混合回填土地基的一维固结分析. 岩土工程学报. 2022(04): 632-642 . 本站查看
    7. 刘武,过申磊,陆倩,郑连阁,袁文俊. 基于TOUGHREACT的岩石水力损伤耦合数值模型研究. 岩土工程学报. 2021(07): 1306-1314+1380 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  390
  • HTML全文浏览量:  5
  • PDF下载量:  344
  • 被引次数: 16
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回