• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩土抗剪强度参数的最优概率分布函数推断方法

宫凤强, 黄天朗, 李夕兵

宫凤强, 黄天朗, 李夕兵. 岩土抗剪强度参数的最优概率分布函数推断方法[J]. 岩土工程学报, 2016, 38(z2): 204-209. DOI: 10.11779/CJGE2016S2033
引用本文: 宫凤强, 黄天朗, 李夕兵. 岩土抗剪强度参数的最优概率分布函数推断方法[J]. 岩土工程学报, 2016, 38(z2): 204-209. DOI: 10.11779/CJGE2016S2033
GONG Feng-qiang, HUANG Tian-lang, LI Xi-bing. Inference method for optimal probability distribution function of shear strength parameters in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 204-209. DOI: 10.11779/CJGE2016S2033
Citation: GONG Feng-qiang, HUANG Tian-lang, LI Xi-bing. Inference method for optimal probability distribution function of shear strength parameters in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 204-209. DOI: 10.11779/CJGE2016S2033

岩土抗剪强度参数的最优概率分布函数推断方法  English Version

基金项目: 国家自然科学基金项目(41102170); 中央高校基本科研业务费专项资金项目(2011QNZT090)
详细信息
    作者简介:

    宫凤强(1979- ),男,博士(后),副教授,博士生导师,主要从事岩土工程可靠度和岩石动力学方面的教学与研究工作。E-mail: fengqiangg@126.com。

Inference method for optimal probability distribution function of shear strength parameters in geotechnical engineering

  • 摘要:

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    Abstract: The inference of optimal probability distribution of shear strength parameters is the basis and premise to ensure the accuracy of reliability calculation in geotechnical engineering. The existing studies suggest that most of the shear strength parameters obey the normal or logarithmic normal distribution. However, because the actual distribution range of geotechnical parameters is very limited, the problem that range mismatches between the defined interval of normal distribution or logarithmic normal distribution and the actual distribution interval of geotechnical parameters is inevitable. Considering the fact that there is a certain degree of skewness for the distribution of most geotechnical parameters, based on the "3" principle, a distributed interval determination method adjusted with the skewness is proposed. Three groups of samples of the internal friction angle of batholiths from water conservancy and hydropower projects are treated as examples, and the normal information diffusion method (NID method) is used to infer their respective probability distribution function. The K-S test method is also introduced to test the fitting degree. At the same time, in order to investigate the influence of sample sizes on the fitting accuracy of the normal information diffusion method and the typical distribution fitting method, eight groups of samples are produced using the Monte-Carlo method, and the sample size is 15, 20, 30, 50, 100, 200, 500 and 1000. The results show that, regardless of the actual or simulated samples, compared with the logarithmic normal distribution (obtained by the typical distribution fitting method), all the test values of the normal information diffusion distribution are lower than those of lognormal distribution, and tend to converge with the increase of the sample sizes.
  • [1] ZHAO Y, ANG A. Three-parameter gamma distribution and its significance in structural reliability[J]. Computational Structural Engineering, 2002, 2(1): 1-10.
    [2] 陈立宏, 陈祖煜, 刘金梅. 土体抗剪强度指标的概率分布类型研究[J]. 岩土力学, 2005, 26(1): 37-40. (CHEN Li-hong, CHEN Zu-yu, LIU Jin-mei. Probability distribution of soil strength[J]. Rock and Soil Mechanics, 2005, 26(1): 37-40. (in Chinese))
    [3] 宫凤强, 李夕兵, 邓 建. 岩土力学参数概率分布的切比雪夫多项式推断[J]. 计算力学学报, 2006, 23(6): 722-727. (GONG Feng-qiang, LI Xi-bing, DENG Jian. Assessment of probability distribution of mechanical parameters of rock & soil by using Chebyshev orthogonal polynomials[J]. Chinese Journal of Computational Mechanics, 2006, 23(6): 722-727. (in Chinese))
    [4] LI X B, GONG F Q. A method for fitting probability distributions to engineering properties of rock masses using Legendre orthogonal polynomials[J]. Structural Safety, 2009, 31(4): 335-343.
    [5] 严春风, 刘东燕, 张建辉, 等. 岩土工程可靠度关于强度参数分布函数概型的敏感性分析[J]. 岩石力学与工程学报, 1999, 18(1): 36-39. (YAN Chun-feng, LIU Dong-yan, ZHANG Jian-hui, et al. The susceptibility analysis of reliability for the probability distribution types of parameters in strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(1): 36-39. (in Chinese))
    [6] 姜 彤, 马 莎, 李永新. 抗剪强度 c , φ 值概率分布对边坡可靠性分析的影响[J]. 华北水利水电学院学报, 2004, 25(3): 46-49. (JIANG Tong, MA Sha, LI Yong-xin. The study of effect on the reliability of rock slope by different probability distribution of shear strength c , φ [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2004, 25(3): 46-49. (in Chinese))
    [7] 罗 冲, 殷坤龙, 陈丽霞, 等. 万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J]. 岩石力学与工程学报, 2005, 24(9): 1588-1593. (LUO Chong, YIN Kun-long, CHEN Li-xia, et al. Probability distribution fitting and optimization of shear strength parameters in sliding zone along horizontal-stratum landslides in Wanzhou city[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1588-1593. (in Chinese))
    [8] 张红琼. 重庆地区滑带土抗剪强度参数概率统计分析[J]. 灾害与防治工程, 2007(1): 62-67. (ZHANG Hong-qiong. Probability distribution statistics analysis of shear strength parameters in sliding zone along horizontal-stratum landslides in Chongqing city[J]. Disaster and Control Engineering, 2007(1): 62-67. (in Chinese))
    [9] 陈炜韬, 王玉锁, 王明年, 等. 黏土质隧道围岩抗剪强度参数的概率分布及优化实例[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3782-3787. (CHEN Wei-tao, WANG Yu-suo, WANG Ming-nian, et al. Probability distribution and optimizing example of shear strength parameters of surrounding rock in cohesive soil tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3782-3787. (in Chinese))
    [10] 苏卫卫, 黄宏伟, 张 洁. 上海软粘土抗剪强度指标概率分布类型研究[J]. 地下空间与工程学报, 2012, 8(增刊2): 1695-1699. (SU Wei-wei, HUANG Hong-wei, ZHANG Jie. Risk analysis of the underground passage through rail transit construction scheme[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(S2): 1695-1699. (in Chinese))
    [11] 陈祖煜. 土质边坡稳定分析[M]. 北京:中国水利水电出版社, 2003. (CHEN Zu-yu. Soil slope stability analysis[M]. Beijing: China Water Power Press, 2003. (in Chinese))
    [12] 崔 洁, 江 权, 冯夏庭, 等. 岩石抗剪强度参数的理论概率分布形态研究[J]. 岩土力学, 2015, 36(5): 1261-1274. (CUI Jie, JIANG Quan, FENG Xia-ting, et al. Theoretical probability distribution of shear strength parameters for rock[J]. Rock and Soil Mechanics, 2015, 36(5): 1261-1274. (in Chinese))
    [13] HUANG C F. Principle of information diffusion[J]. Fuzzy Sets and Systems, 1997, 91: 69-90.
    [14] 王新洲. 基于信息扩散原理的估计理论、方法及其抗差性[J]. 武汉测绘科技大学学报, 1999, 24(3): 240-244. (WANG Xin-zhou. The theory, method and robustness of the parameter estimation based on the principle of information spread[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1999, 24(3): 240-244. (in Chinese))
    [15] 宫凤强, 李夕兵, 邓 建. 小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报, 2006, 25(12): 2559-2564. (GONG Feng-qiang, LI Xi-bing, DENG Jian. Probability distribution of small samples of geotechnical parameters using normal information spread method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2559-2564. (in Chinese))
    [16] 宫凤强, 侯尚骞, 岩小明. 基于正态信息扩散原理的Mohr-Coulomb强度准则参数概率模型推断方法[J]. 岩石力学与工程学报, 2013, 32(11): 2225-2234. (GONG Feng-qiang, HOU Shang-qian, YAN Xiao-ming. Probability model deduction method of Mohr-Coulomb criteria parameters based on normal information diffusion principle[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2225-2234. (in Chinese))
    [17] GONG F Q, HUANG T L. Sample size effect on the probability distribution fitting accuracy of random variable by using normal diffusion estimation method-compared with normal distribution[C]// Proceedings of the 6th Asian-Pacific Symposium on Structural Reliability and its Applications. Shanghai: Tongji University Press, 2016: 199-204.
    [18] 李典庆, 唐小松, 周创兵. 基于Copula理论的岩土体参数不确定性表征与可靠度分析[M]. 北京: 科学出版社, 2014. (LI Dian-qing, TANG Xiao-song, ZHOU Chuang-bing. Uncertainty representation and reliability analysis of rock and soil parameters based on Copula theory[M]. Beijing: Science Press, 2014. (in Chinese))
    [19] 张 蕾, 唐小松, 李典庆基于Copula函数的土体抗剪强度参数二维分布模型[J]. 土木工程与管理学报, 2013, 30(2): 11-17. (ZHANG Lei, TANG Xiao-song LI Dian-qing. Bivariate distribution model of soil shear strength parameter using copula[J]. Journal of Civil Engineering and Management, 2013, 30(2): 11-17. (in Chinese))
  • 期刊类型引用(3)

    1. 沈扬,邓珏,翁禾,阳龙. 分级加卸载下南海珊瑚泥一维固结长期变形试验及模型研究. 岩土力学. 2023(03): 685-696 . 百度学术
    2. 陈信升,丁选明,蒋春勇,方华强,王成龙. 吹填珊瑚岛礁钙质软泥的渗透特性试验研究. 土木与环境工程学报(中英文). 2021(04): 58-66 . 百度学术
    3. 王竞州,丁选明,蒋春勇,方华强. 钙质软土的真空预压与电渗固结室内试验研究. 岩土工程学报. 2021(S2): 36-40 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  365
  • HTML全文浏览量:  3
  • PDF下载量:  310
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回