• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

脆性岩体开挖损伤区范围与影响因素研究

李建贺, 盛谦, 朱泽奇, 刘世伟, 程红战, 周兴涛

李建贺, 盛谦, 朱泽奇, 刘世伟, 程红战, 周兴涛. 脆性岩体开挖损伤区范围与影响因素研究[J]. 岩土工程学报, 2016, 38(z2): 190-197. DOI: 10.11779/CJGE2016S2031
引用本文: 李建贺, 盛谦, 朱泽奇, 刘世伟, 程红战, 周兴涛. 脆性岩体开挖损伤区范围与影响因素研究[J]. 岩土工程学报, 2016, 38(z2): 190-197. DOI: 10.11779/CJGE2016S2031
LI Jian-he, SHENG Qian, ZHU Ze-qi, LIU Shi-wei, CHENG Hong-zhan, ZHOU Xin-tao. Excavation damage zone depth and influence factors of brittle rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 190-197. DOI: 10.11779/CJGE2016S2031
Citation: LI Jian-he, SHENG Qian, ZHU Ze-qi, LIU Shi-wei, CHENG Hong-zhan, ZHOU Xin-tao. Excavation damage zone depth and influence factors of brittle rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 190-197. DOI: 10.11779/CJGE2016S2031

脆性岩体开挖损伤区范围与影响因素研究  English Version

基金项目: 国家重点基础研究发展计划(“973”)项目(2015CB057905); NSFC-云南联合基金重点支持项目(U1402231); 国家自然科学基金面上项目(51279202)
详细信息
    作者简介:

    李建贺(1989- ),男,博士研究生,主要从事地下工程开挖扰动和数值模拟方面的基础性研究工作。E-mail: jianhe_001@126.com。

Excavation damage zone depth and influence factors of brittle rock

  • 摘要: 在脆性岩体地下工程开挖损伤区中,由应力导致的围岩损伤破裂占据主要地位。基于地下洞室开挖破坏数据库,修正了Kaiser等人提出的预测硬岩损伤区深度的经验公式,通过考虑原位应力比的影响,修正后的经验公式在拟合优度和预测准确性方面均有了一定程度的改善。为进一步研究开挖损伤区的范围及影响因素,提出了起裂判据CIC作为损伤区的力学表征指标,经对比验证,采用CIC判别的损伤区深度与经验公式预测值及现场实测值较为吻合,表明CIC作为损伤区表征指标具有较好的可行性;在CIC基础上,分析了洞室形状、方位对围岩诱发应力和损伤区范围的影响,研究表明,在高地应力场条件下,“谐洞”并不是最合理的洞形,而通过在小主应力方向上设置小曲率半径,可将高压缩应力限制在局部范围内,从而避免洞室围岩大范围的损伤破裂。相关认识和结论具有一定理论和工程意义。
    Abstract: The stress-induced excavation damage occupies the main position in brittle rock mass of underground engineering. Based on the excavation damage database of underground opening, the empirical formula for damage depth of hard rock put forward by Kaiser is revised. By considering the effect of the initial stress ratio, the revised empirical formula is improved with a certain extent in the goodness of fitting and prediction accuracy. For further studies on excavation damage zone and its influencing factors, the crack initial criterion (CIC) is put forward as the mechanical index for damage zone. It is found that the damage depth assessed by CIC is coincident with the predicted values by the empirical formula and filed measured values, indicating that CIC as the index for damage zone has good feasibility. On the basis of CIC, the induced stress and damage range of the surrounding rock are analyzed under different opening shapes and orientations. It is shown that the "Harmonious hole" is not the most reasonable shape under high stress field. By setting a small radius of curvature in the minor principal stress direction, the high compression stress can be limited within a local scope, and thus a wide range of surrounding rock damage of underground engineering can be avoided. The related understanding and conclusions are of certain theoretical and engineering significance.
  • [1] READ R S. 20 years of excavation response studies at AECL’s underground research laboratory[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 8(41): 1251-1275.
    [2] 李邵军, 冯夏庭, 张春生, 等. 深埋隧洞 TBM 开挖损伤区形成与演化过程的数字钻孔摄像观测与分析[J]. 岩石力学与工程学报, 2010, 29(6): 1106-1112. (LI Shao-jun, FENG Xia-ting, ZHANG Chun-sheng, et al. Testing on formation and evolution of tbm excavation damaged zone in deep-buried tunnel based on digital panoramic borehole camera technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1106-1112. (in Chinese))
    [3] BLÜMLING P, BERNIER F, LEBON P, et al. The excavation damaged zone in clay formation time-dependent behaviour and influence on performance assessment[J]. Physics and Chemistry of the Earth, Parts A/B/C 2007, 32: 588-99.
    [4] 李占海. 深埋隧洞开挖损伤区的演化与形成机制研究[D]. 沈阳: 东北大学, 2013. (LI Zhan-hai. The Formation and Evolution Mechanism of Excavation Damaged Zone under Deep Tunnel Excavation[D]. Shenyang: Northeastern University, 2013. (in Chinese))
    [5] KAISER P K,MCCREATH D R,TANNANT D D. Canadian rockburst support handbook[M]. Sudbury: Camiro, 1996: 10.
    [6] JAKUBICK A T, FRANZ T. Vacuum testing of the permeability of the excavation damaged zone[J]. Rock Mechanics and Rock Engineering, 1993, 26(2): 165-82.
    [7] MARTIN C D, KAISER P K, MCCREATH D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal, 1999, 36(1): 136-151.
    [8] 彭 俊, 荣 冠, 周创兵, 等. 一种基于GSI 弱化的应变软化模型[J]. 岩土工程学报, 2014, 36(3): 499-507. (PENG Jun, RONG Guan, ZHOU Chuang-bing, et al. A strain-softening model based on GSI softening[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 499-507. (in Chinese))
    [9] 董方庭, 宋宏伟, 郭志宏, 等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994, 19(1): 21-32. (DONG Fang-ting, SONG Hong-wei, GUO Zhi-hong, et al. Roadway support theory based on broken rock zone[J]. Journal of China Coal Society, 1994, 19(1): 21-32. (in Chinese))
    [10] HARRISON J P, HUDSON J A. Engineering rock mechanics: Part 2: Illustrative worked examples[M]. Elsevier: Pergamon, 2000.
    [11] EBERHARDT E, DIEDERICHS M. Review of engineering geology and rock engineering aspects of the construction of a KBS-3 repository at the Forsmark site—initial review phase[M]. Stockholm: Swedish Radiation Safety Authority, 2012.
    [12] SIREN T, KANTIA P, RINNE M. Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 165-74.
    [13] MALMGREN L, SAIANG D, TÖYRÄ J, et al. The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden—by seismic measurements[J]. J Appl Geophys 2007, 61: 1-15.
    [14] PERRAS M A. Understanding and predicting excavation damage in sedimentary rocks: A continuum based approach[D]. Kingston: Queen's University, 2014.
    [15] JAEGER J C, COOK N G W. Fundamentals of rock mechanics[M]. 2nd ed. London: Chapman & Hall, 1976.
    [16] 于学馥. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983. (YU Xue-fu. The stability analysis of surrounding rock of underground engineering[M]. Beijing: China Coal Industry Publishing House, 1983. (in Chinese))
    [17] RICHARDS R, BJORKMAN G S, Optimum shapes for unlined tunnels and cavities[J]. Engineering Geology, 1978, 12(2): 171-179.
    [18] FAIRHURST C, CARRANZA-TORRES C. Some comments on design procedures for tunnel supports in rock. in proceedings[C]// University of Minnesota 50th Annual Geotechnical Conference. LABUZ J F, BENTLER J G, Eds. Minneapolis: University of Minnesota, 2002: 21-84.
  • 期刊类型引用(1)

    1. 凌跃,刘元雪,赵久彬,白云山,赵智宏,王云潇,张左群. 基于大数据的砂土滞后性计算模型研究. 计算机与数字工程. 2022(06): 1298-1305 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  465
  • HTML全文浏览量:  17
  • PDF下载量:  188
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-05-18
  • 发布日期:  2016-10-19

目录

    /

    返回文章
    返回