• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑浆液自重的盾构隧道管片注浆浆液渗透扩散模型

叶飞, 陈治, 孙昌海, 韩兴博, 杨涛, 纪明

叶飞, 陈治, 孙昌海, 韩兴博, 杨涛, 纪明. 考虑浆液自重的盾构隧道管片注浆浆液渗透扩散模型[J]. 岩土工程学报, 2016, 38(12): 2175-2183. DOI: 10.11779/CJGE201612005
引用本文: 叶飞, 陈治, 孙昌海, 韩兴博, 杨涛, 纪明. 考虑浆液自重的盾构隧道管片注浆浆液渗透扩散模型[J]. 岩土工程学报, 2016, 38(12): 2175-2183. DOI: 10.11779/CJGE201612005
YE Fei, CHEN Zhi, SUN Chang-hai, HAN Xing-bo, YANG Tao, JI Ming. Penetration diffusion model for backfill grouting through segments of shield tunnel considering weight of grout[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2175-2183. DOI: 10.11779/CJGE201612005
Citation: YE Fei, CHEN Zhi, SUN Chang-hai, HAN Xing-bo, YANG Tao, JI Ming. Penetration diffusion model for backfill grouting through segments of shield tunnel considering weight of grout[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2175-2183. DOI: 10.11779/CJGE201612005

考虑浆液自重的盾构隧道管片注浆浆液渗透扩散模型  English Version

基金项目: 国家自然科学基金项目(51478044,51178052,51678062)
详细信息
    作者简介:

    叶 飞(1977- ),男,教授,主要从事隧道与地下工程方面的教学和科研工作。E-mail: xianyefei@126.com。

Penetration diffusion model for backfill grouting through segments of shield tunnel considering weight of grout

  • 摘要: 为研究盾构隧道管片注浆的渗透扩散模型,以宾汉姆浆液流体为研究对象,基于广义达西定律(毛管组理论),并运用相关流体力学理论,推导了考虑浆液自重的盾构隧道管片注浆渗透扩散模型的计算公式,并分析了其适用范围及各参数的确定方法。结合具体计算案例,讨论了注浆参数(注浆压力、注浆时间)、地层特性(地层渗透系数)等主要因素对浆液扩散半径的影响及浆液对管片总压力的影响。结果表明:考虑浆液自重后,浆液的扩散范围呈椭球形;相同的注浆压力下,顶部注浆孔的浆液扩散范围小于底部注浆孔浆液扩散范围(顶部注浆孔出现最小扩散半径,底部注浆孔出现最大扩散半径);注浆压力、注浆时间及地层渗透系数增大,浆液扩散半径也增大,但其增长速率均减小;注浆压力增大,管片所受的注浆压力增大,单位管片所受的浆液压力呈线性增长,考虑浆液自重后,上部单位管片所受的浆液压力大于下部单位管片所受的浆液压力;注浆压力越大,注浆时间越长,地层渗透系数越大,最大扩散半径与最小扩散半径的差值越大,即浆液自重对浆液扩散半径的影响越大。
    Abstract: In order to study the penetration diffusion model for backfill grouting through segments of shield tunnel, taking the Bingham fluid as research object, the formulae for calculating the backfill grouting through segments of shield tunnel are deduced based on the generalized Darcy's law (capillary group theory) by means of the theory of fluid mechanics and their application scopes and the determination methods for their parameters are analyzed. For a specific case, the influences of grouting parameters (grouting pressure and grouting time) and ground conditions (permeability coefficient) upon the radius of grout diffusion and the total pressure on segments are discussed. The results show that after considering the weight of grouts, the diffusion shape of the grouts looks like a spheroid. Under the same grouting pressure, the diffusion range of the grouts from the top grouting hole is smaller than that from the bottom grouting hole (the minimum diffusion radius appears at the top grouting hole and the maximum diffusion radius appears at the bottom grouting hole). The diffusion radius increases along with the increase of grouting pressure, grouting time and permeability coefficient of strata, but its growth rate decreases. The pressure on segments increases with the increase of grouting pressure, and the pressure on unit segment grows linearly. The grouting pressure on the upper unit segment is greater than that on the bottom one considering the weight of the grouts. The difference between the maximum and the minimum diffusion radiis will be larger if the pressure on segments is greater, the grouting time is longer and the permeability coefficient of strata is larger. That is to say, the weight of the grouts has a great impact on the diffusion radius of the grouts.
  • [1] 周文波. 盾构法隧道施工技术及应用[M]. 北京: 中国建筑工业出版社, 2004: 21-22. (ZHOU Wen-bo. Shield tunneling technology[M]. Beijing: China Architecture &Building Press, 2004: 21-22. (in Chinese))
    [2] ZHANG W J. Study on mechanical behavior and design of composite segment for shield tunnel[D]. Tokyo: Waseda University, 2009.
    [3] 张海涛. 盾构同步注浆材料试验及隧道上浮控制技术[D]. 上海: 同济大学, 2007. (ZHANG Hai-tao. Study on the proportioning of tail void grouting material and up floating control of shield tunnel[D]. Shanghai: Tong-ji University, 2007. (in Chinese))
    [4] 《岩土注浆理论与工程实例》编写组. 岩土注浆理论与工程实例[M]. 北京: 科学出版社, 2001. (Writing Group of "Geotechnical grouting theory and engineering examples". Geotechnical grouting theory and engineering examples[M]. Beijing: Science Press, 2001. (in Chinese))
    [5] 叶 飞, 刘燕鹏, 苟长飞, 等. 盾构隧道壁后注浆浆液毛细管渗透扩散模型[J]. 西南交通大学学报, 2013, 48(3): 428-434. (YE Fei, LIU Yan-peng, GOU Chang-fei, et al. Capillary penetration diffusion model for backfill grouting of shield tunnel[J]. Journal of Southwest Jiaotong University, 2013, 48(3): 428-434. (in Chinese))
    [6] 叶 飞, 苟长飞, 刘燕鹏, 等. 盾构隧道壁后注浆浆液时变半球面扩散模型[J]. 同济大学学报(自然科学版), 2012, 40(12): 1789-1794. (YE Fei, GOU Chang-fei, LIU Yan-peng, et al. Half-spherical surface diffusion model of shield tunnel back-filled grouts[J]. Journal of Tong-Ji University(Natural Science), 2012, 40(12): 1789-794. (in Chinese))
    [7] 叶 飞, 苟长飞, 陈 治, 等. 盾构隧道黏度时变性浆液壁后注浆渗透扩散模型[J]. 中国公路学报, 2013, 26(1): 127-134. (YE Fei, GOU Chang-fei, CHEN Zhi, et al. Back-filled grouts diffusion model of shield tunnel considering its viscosity degeneration[J]. China Journal of Highway and Transport, 2013, 26(1): 127-134. (in Chinese))
    [8] 杨秀竹, 雷金山, 夏力农, 等. 幂律型浆液扩散半径研究[J]. 岩土力学, 2005, 26(11): 1803-1806. (YANG Xiu-zhu, LIE Jin-shan, XIA Li-nong, et al. Study on grouting diffusion radius of exponential fluids[J]. Rock and Soil Mechanics, 2005, 26(11): 1803-1806. (in Chinese))
    [9] 杨志全, 侯克鹏, 梁 维, 等. 牛顿流体柱-半球面渗透注浆形式扩散参数的研究[J]. 岩土力学, 2015, 35(2): 17-24. (YANG Zhi-quan, HOU Ke-peng, LIANG Wei, et al. Study of diffusion parameters of Newtonian fluid based on column-hemispherical penetration grouting[J]. Rock and Soil Mechanics, 2015, 35(2): 17-24. (in Chinese))
    [10] 杨志全, 侯克鹏, 郭婷婷, 等. 黏度时变性宾汉体浆液的柱-半球形渗透注浆机制研究[J]. 岩土力学, 2011, 32(9): 2697-2703. (YANG Zhi-quan, HOU Ke-peng, GUO Ting-ting, et al. Study of column-hemispherical penetration grouting mechanism based on Bingham fluid of time-dependent behavior of viscosity[J]. Rock and Soil Mechanics, 2011, 32(9): 2697-2703. (in Chinese))
    [11] 杨志全, 侯克鹏, 程 涌, 等. 幂律型流体的柱-半球形渗透注浆机制研究[J]. 岩石力学与工程学报, 2014, 33(2): 3480-3486. (YANG Zhi-quan, HOU Ke-peng, CHENG Yong, et al. Study of column hemispherical-penetration grouting mechanism based on power-law fluid[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 3480-3486. (in Chinese))
    [12] BAKER C. Comments on paper “Rock stabilization in rock mechanics”[M]. Muler: Springer-Verlag NY, 1974.
    [13] 阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学, 2005, 24(15): 2709-2714. (RUAN Wen-jun. Spreading model of grouting in rock mass fissures based on time-dependent behavior of viscosity of cement-based grouts[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2709-2714. (in Chinese))
    [14] 许万忠, 潘进兵, 周治平, 等. 节理裂隙岩体注浆渗透模型分析[J]. 中国铁道科学, 2010, 32(3): 47-51. (XU Wan-zhong, PAN Jin-bing, ZHOU Zhi-ping, et al. Model analysis of the grouting seepage in the jointed and fractured rock mass[J]. China Rail Way Science, 2010, 32(3): 47-51. (in Chinese))
    [15] 张庆松, 张连震, 张 霄, 等. 基于浆液黏度时空变化的水平裂隙岩体注浆扩散机制[J]. 岩石力学与工程学报, 2015, 34(6): 1198-1210. (ZHANG Qing-song, ZHANG Lian-zhen, ZHANG Xiao, et al. Grouting diffusion in a horizontal crack considering temporal and spatial variation of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1198-1210. (in Chinese))
    [16] 叶 飞, 陈 治, 苟长飞, 等. 基于球孔扩张的盾构隧道壁后注浆压密模型[J]. 交通运输工程学报, 2014, 14(1): 35-42. (YE Fei, CHEN Zhi, GOU Chang-fei, et al. Back-filled grouting compaction model of shield tunnel based on spherical cavity expansion[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 35-42. (in Chinese))
    [17] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报, 2005, 27(1): 69-73. (RUAN Wen-jun. Research on diffusion of grouting and basic properties of grouts[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 69-73. (in Chinese))
    [18] 叶 飞. 软土盾构隧道施工期上浮机理分析及控制研究[D]. 上海: 同济大学, 2007. (YE Fei. Analysis and control for upward movement of shield tunnel during construction[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [19] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2010: 41-44. (KONG Xiang-yan. Advanced mechanics of fluid flow in porous media[M]. Hefei: Press of University of Science and Technology of China, 2010: 41-44. (in Chinese))
    [20] 刘文永, 王新刚, 冯春喜, 等. 注浆材料与施工工艺[M]. 北京: 中国建筑工业出版社, 2008. (LIU Wen-yong, WANG Xin-gang, FENG Chun-xi, et al. Grouting materials and construction technology[M]. Beijing: China Architecture & Building Press, 2008. (in Chinese))
    [21] 杨志全. 水泥浆液在小粒径砂石体中注浆理论及模拟实验研究[D]. 昆明: 昆明理工大学, 2008. (YANG Zhi-quan. Theoretical and simulation-experimental study of cement slurry in a small particle size gravel body grouting[D]. Kunming: Kunming University of Science and Technology, 2008. (in Chinese))
  • 期刊类型引用(3)

    1. 沈扬,邓珏,翁禾,阳龙. 分级加卸载下南海珊瑚泥一维固结长期变形试验及模型研究. 岩土力学. 2023(03): 685-696 . 百度学术
    2. 陈信升,丁选明,蒋春勇,方华强,王成龙. 吹填珊瑚岛礁钙质软泥的渗透特性试验研究. 土木与环境工程学报(中英文). 2021(04): 58-66 . 百度学术
    3. 王竞州,丁选明,蒋春勇,方华强. 钙质软土的真空预压与电渗固结室内试验研究. 岩土工程学报. 2021(S2): 36-40 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-10-19
  • 发布日期:  2016-12-24

目录

    /

    返回文章
    返回