• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

泥水平衡式盾构模拟试验系统的研制与应用

齐春, 何川, 封坤, 汤印, 王维, 夏炜洋

齐春, 何川, 封坤, 汤印, 王维, 夏炜洋. 泥水平衡式盾构模拟试验系统的研制与应用[J]. 岩土工程学报, 2016, 38(11): 1999-2008. DOI: 10.11779/CJGE201611009
引用本文: 齐春, 何川, 封坤, 汤印, 王维, 夏炜洋. 泥水平衡式盾构模拟试验系统的研制与应用[J]. 岩土工程学报, 2016, 38(11): 1999-2008. DOI: 10.11779/CJGE201611009
QI Chun, HE Chuan, FENG Kun, TANG Yin, WANG Wei, XIA Wei-yang. Development and application of simulation test system for slurry balance shield[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1999-2008. DOI: 10.11779/CJGE201611009
Citation: QI Chun, HE Chuan, FENG Kun, TANG Yin, WANG Wei, XIA Wei-yang. Development and application of simulation test system for slurry balance shield[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1999-2008. DOI: 10.11779/CJGE201611009

泥水平衡式盾构模拟试验系统的研制与应用  English Version

基金项目: 国家自然科学基金项目(U1361210,51578462,51208432)
详细信息
    作者简介:

    齐 春(1988- ),男,博士研究生,研究方向为现代盾构隧道技术与设计理论。E-mail: qichun0304@126.com。

    通讯作者:

    何川,E-mail:chuanhe21@163.com

Development and application of simulation test system for slurry balance shield

  • 摘要: 为了探究泥水盾构水下掘进控制和泥水平衡机理等问题,在调研国内外模型盾构设备的基础上确定泥水盾构的基本参数和工作模式,研制出泥水平衡盾构模拟试验系统,包括模型箱、盾构机总成、推进机构、液压动力系统、操作系统、深冷装置等主要部分。该系统可对最高100 m水头条件下泥水平衡盾构施工的主要过程进行模拟,可较真实地再现泥水平衡盾构掘进过程中泥膜的动态形成过程,从而阐明水土压力平衡的机理等关键技术问题,并可为泥水平衡盾构的设计和控制提供重要参数。以砂卵石地层为例配制相似地层和泥浆,并进行盾构试掘进,对设备的功能性进行验证,并初步研究了泥水盾构掘进过程中地表位移的时空变化规律和地层中泥膜的形态。结果表明,由于刀盘无超挖且地层开挖后直接由盾壳支撑,土体移动受到限制,地层变形主要由开挖导致的应力释放产生。排渣装置长度较长,可暂存的渣土量多,使得盾构通过前地表沉降随顶推力和刀盘、排渣装置转速的增大而增大;盾构通过后的地表沉降则由于盾壳与土体的摩擦作用有所减小。在盾构刀盘前方,泥浆渗入地层的范围大致关于盾构轴线对称,泥膜形态呈倒扣的“锅底”形分布,其范围约占刀盘外径的20%~43%。
    Abstract: To study the excavation control and the balance mechanism on the cutting face during underwater excavation of slurry balance shield (SBS), the basic parameters and working modes of SBS are determined after investigation of model shield machines worldwide, and then a simulation test system for SBS is developed. The system mainly consists of model box, shield machine assembly, thrusting system, hydraulic power system, operation system and cryogenic unit. It can simulate the main procedure of SBS excavation under the maximum water head of 100 m, and can really reproduce the dynamic formation process of the slurry membrane during excavation, which is critical for illustrating the mechanism of water-earth pressure balance and may provide important parameters for the design and control of SBS. The similar stratum and slurry are prepared based on the sandy gravel strata, and an excavation test is then carried out to verify the function of the simulation system. The space-time variation laws of the ground surface settlements as well as the slurry membrane morphology during shield excavation are also analyzed. The results show that because the cutter head has no over-excavation and the stratum is directly supported by the shield shell, the soil movement is restricted, and the stratum deformation is mainly caused by the stress release caused by the excavation. As the mud discharge device is long, which enhances the temporary storage capacity of mud, the ground surface settlements before shield passing through increase with trust force, cutter head speed and speed of mud discharge device. After the shield passing through, the ground surface settlements decrease due to shield-soil friction. The slurry permeation region in front of the cutter head is approximately symmetric about the shield axis, and the slurry membrane morphology is a flip "pot" shape, whose dimensions are about 20% to 43% of the external diameter of the cutter head.
  • [1] .FRITZ P. Additives for slurry shields in highly permeable ground[J]. Rock Mechanics & Rock Engineering, 2007, 40(1): 81-95.
    [2] 孙 钧. 海底隧道工程设计施工若干关键技术的商榷[J]. 岩石力学与工程学报, 2006, 25(8): 1513-1521. (SUN Jun. Discussion on some key technical issues for design and construction of undersea tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8): 1513-1521. (in Chinese))
    [3] HE C, WANG B. Research progress and development trends of highway tunnels in China[J]. Journal of Modern Transportation, 2013, 21(4): 209-223.
    [4] 齐 春, 何 川, 封 坤. 考虑流固耦合效应的水下盾构隧道受力特性[J]. 西南交通大学学报, 2015, 50(2): 306-311, 330. (QI Chun, HE Chuan, FENG Kun. Fluid-solid interaction-based mechanical characteristics of underwear shield tunnel[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 306-311, 330. (in Chinese))
    [5] 夏炜洋. 盾构法隧道施工期流固耦合问题研究[D]. 成都:西南交通大学, 2012. (XIA Wei-yang. Study on coupled solid-fluid problem of shield tunnel during construction period[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese))
    [6] ANAGNOSTOU G, KOVÁRI K. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 21(2): 165-174.
    [7] BROERE W. Tunnel face stability and new CPT applications[D]. Delft: Delft University of Technology, 2001.
    [8] BROERE W. Influence of excess pore pressures on the stability of the tunnel face[C]// Claiming the Underground Space, ITA. Amsterdam, 2003: 759-765.
    [9] 闵凡路, 朱 伟, 魏代伟, 等. 泥水盾构泥膜形成时开挖面地层孔压变化规律研究[J]. 岩土工程学报, 2013, 35(4): 722-727. (MIN Fan-lu, ZHU Wei, WEI Dai-wei, et al. Change of pore water pressure in soil as filter cakes formed on excavation face in slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 722-727. (in Chinese))
    [10] MIN F L, ZHU W, HAN X R. Filter cake formation for slurry shield tunneling in highly permeable sand[J]. Tunnelling and Underground Space Technology, 2013, 38(9): 423-430.
    [11] 森 麟,秋葉芳明. 密閉式シ—ルドにおけゐ粘土性切羽地盤の破壞条件と取り込み土量の支配条件[J]. トンネルと地下, 1984, 15(8)(168): 25-29. (MORI Akira, AKIBA Yoshiki. Fluid-solid interaction-based mechanical characteristics of underwear shield tunnel[J]. Tunnels and Underground, 1984, 15(8)(168): 25-29. (in Japanese))
    [12] 栗原和夫, 森 麟, 田村昌仁. 泥水式シールドの適正泥水圧に関する実験的研究[J]. 土木学会論文集, 1989, 6(11)(409): 37-46. (KURIHARA Kazuo, MORI Akira, TAMURA Masahito. Experimental study on the suitable slurry pressure in a slurry type shield[J]. Journal of JSCE, 1989, 6(11)(409): 37-46. (in Japanese))
    [13] 森仁司, 栗原和夫, 森 麟,ほか. 泥水式シールドによる砂質切羽地盤の間隙水圧とその発生メカニズム[C]// 土木学会論文集, 1991, 3(15): 115-124. (MORI Akira, KURIHARA Kazuo, MORI Hitoshi, et al. The mechanism of the increases of the pore water pressure in sandy soils by tunnel driving with slurry type shield[C]// Journal of JSCE,1991, 3(15): 115-124. (in Japanese))
    [14] 程展林, 吴忠明, 徐言勇. 砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J]. 长江科学院院报, 2001, 18(5): 53-64. (CHEN Zhan-lin, WU Zhong-ming, XU Yan-yong. Experimental study on stability of tunnel excavation surface in sand foundation by slurry shield method[J]. Journal of Yangtze River Scientific Research Institute, 2001, 18(5): 53-64. (in Chinese))
    [15] 袁大军, 黄清飞, 小泉淳, 等. 水底盾构掘进泥水喷发现象研究[J]. 岩石力学与工程学报, 2007, 26(11): 2296-2301. (YUAN Da-jun, HUANG Qing-fei, KOIZUMI Atsushi, et al. Study on slurry-water gushing during underwater shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2296-2301. (in Chinese))
    [16] 徐前卫, 朱合华, 唐卓华, 等. 可模拟泥水平衡盾构施工的室内模型试验装置及使用方法[P]: 中国, CN103437771A. 2013. (XU Qian-wei, ZHU He-hua, TANG Zhuo-hua, et al. A laboratory model test equipment for simulating slurry balance shield construction and its application method[P]. China, CN103437771A. 2013. (in Chinese))
    [17] 何 川, 张建刚, 苏宗贤. 大断面水下盾构隧道结构力学特性[M]. 北京: 科学出版社, 2010. (HE Chuan, ZHANG Jian-gang, SU Zong-xian. Mechanical characteristics of underwater shield tunnel structure with large cross-section[M]. Beijing: Science Press, 2010. (in Chinese))
    [18] 胡国良, 龚国芳, 杨华勇, 等. 盾构螺旋输送机液压驱动及控制系统[J]. 液压与气动, 2004(12): 33-35. (HU Guo-liang, GONG Guo-fang, YANG Hua-yong, et al. Hydraulic drive and control system of shield screw conveyor[J]. Chinese Hydraulics & Pneumatics, 2004(12): 33-35. (in Chinese))
    [19] HE J, VLASBLOM W J. Effects of filter cake on soil cutting in tunneling[C]// Progress in Tunnelling after 2000, Proceedings of the AITES-ITA 2001 World Tunnel Congress. Milan, 2001: 181-188.
    [20] 张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004. (ZHANG Feng-xiang, ZHU He-hua, FU De-ming, et al. Shield tunneling method[M]. Beijing: China Communications Press, 2004. (in Chinese))
    [21] 徐前卫. 盾构施工参数的地层适应性模型试验及其理论研究[D]. 上海: 同济大学, 2006. (XU Qian-wei. Study on the simulated model test of shield machine’s working parameters applicable to different stratums and its theoretical investigation[D]. Shanghai: Tongji University, 2006. (in Chinese))
    [22] 江英超. 盾构掘进对砂卵石地层的扰动机理研究[D]. 成都: 西南交通大学, 2014. (JIANG Ying-chao. Study on the soil disturbance mechanism of shield tunnelling in sandy cobble stratum[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese))
    [23] 刘 成, 孙 钧, 杨 平, 等. 泥膜形成与状态划分细观分析及模型试验研究[J]. 岩土工程学报, 2014, 36(3): 435-442. (LIU Cheng, SUN Jun, YANG Ping, et al. Mesoscopic analysis and model test on formation process and state division of slurry membrane[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 2296-2301. (in Chinese))
计量
  • 文章访问数:  316
  • HTML全文浏览量:  33
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-07
  • 发布日期:  2016-11-19

目录

    /

    返回文章
    返回