• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地震液化灾害自适应步长计算方法及控制参数研究

张西文, 唐小微, 姚霁菲, 杨令强

张西文, 唐小微, 姚霁菲, 杨令强. 地震液化灾害自适应步长计算方法及控制参数研究[J]. 岩土工程学报, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012
引用本文: 张西文, 唐小微, 姚霁菲, 杨令强. 地震液化灾害自适应步长计算方法及控制参数研究[J]. 岩土工程学报, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012
ZHANG Xi-wen, TANG Xiao-wei, YAO Ji-fei, YANG Ling-qiang. Adaptive time stepping method for seismic liquefaction disasters and its control parameters[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012
Citation: ZHANG Xi-wen, TANG Xiao-wei, YAO Ji-fei, YANG Ling-qiang. Adaptive time stepping method for seismic liquefaction disasters and its control parameters[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1833-1841. DOI: 10.11779/CJGE201610012

地震液化灾害自适应步长计算方法及控制参数研究  English Version

基金项目: 国家自然科学基金项目(41402261)
详细信息
    作者简介:

    张西文(1987- ),男,讲师,主要从事岩土地震工程、海洋土力学等方面的教学和科研。E-mail: cea_zhangxw@ujn.edu.cn。

Adaptive time stepping method for seismic liquefaction disasters and its control parameters

  • 摘要: 饱和砂土液化是岩土地震工程和土动力学研究领域的重要课题。在动力液化数值计算中,计算精度和计算效率一直是衡量数值方法的重要指标。在水土二相耦合弹塑性计算的数值平台上开发了自适应步长方法,通过位移误差、孔压误差和混合误差的评估体系建立了时间步长自动调整的策略及相关控制参数。通过控制参数的影响性分析,确定了主要控制参数为误差允许值和孔压误差比例系数,辅助控制参数为初始时间步长、步长调整的下限和上限。对处于液化场地的地铁车站模型进行了动力自适应步长数值计算,获得了上浮位移和超孔压比的发展过程,预测出液化上浮的灾害。同时也对比了固定步长法和自适应步长法的精度和效率,发现采用自适应步长法可极大的节约计算成本并不失计算精度。
    Abstract: Seismic liquefaction of saturated soil is a serious problem in the area of geotechnical earthquake engineering. In the numerical analysis of dynamic process, calculation accuracy and efficiency are the two important indexes to evaluate the numerical method. An adaptive time stepping method is proposed based on a solid-fluid coupled method and an elasto-plastic analysis platform. According to the estimation system of displacement errors, pore water pressure errors and mixed errors, the strategy of time step adjustment and the relevant control parameters are established. Through the sensitivity analysis of control parameters, the error tolerance and proportionality coefficient of pore water pressure errors are identified as the main control parameters, while the initial time step size, lower and upper limits of time step adjustment factor are identified as the assistant parameters. Then, the adaptive stepping method is applied in the numerical analysis of a subway station located in the liquefiable area. The time histories of the uplift displacement and the excess pore water pressure ratio are obtained, which indicates the hazards of underground structure uplift induced by seismic liquefaction. Besides, the fixed stepping and adaptive stepping methods are compared, and it is found that using the adaptive stepping method can save more computational cost without losing the accuracy.
  • [1] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [2] 黄 雨, 于 淼, BHATTACHARYA S. 2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 2013, 35(5): 834-840. (HANG Yu, YU Miao, BHATTACHARYA S. Review on liquefaction-induced damages of soil and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 834-840. (in Chinese))
    [3] 陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755. (CHEN Guo-xing, JIN Dan-dan, CHANG Xiang-dong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755. (in Chinese))
    [4] 袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [5] 凌贤长, 唐 亮, 苏 雷, 等. 中日规范中关于液化和侧向扩流场地桥梁桩基抗震设计考虑之比较[J]. 防灾减灾工程学报, 2011, 31(5): 490-495. (LING Xian-chang, TANG Liang, SU Lei, et al. Comparison of seismic design consideration between chinese and Japanese seismic design codes for bridge pile foundation in liquefying ground and lateral spreading ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(5): 490-495. (in Chinese))
    [6] 陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408-1413. (CHEN Yu-min, LIU Han-long, SHAO Guo-jian, et al. Laboratory tests on flow characteristics of liquefaction and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408-1413. (in Chinese))
    [7] YE B, YE G L, YE W M, et al. A pneumatic shaking table and its application to a liquefaction test on saturated sand[J]. Natural Hazards, 2013, 66(2): 375-388.
    [8] 张建民, 王 刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. (ZHANG Jian-min, WANG Gang. Mechanism of large post liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835-840. (in Chinese))
    [9] 王 刚, 张建民. 砂土液化变形的数值模拟[J]. 岩土工程学报, 2007, 29(3): 403-409. (WANG Gang, ZHANG Jian-min. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 403-409. (in Chinese))
    [10] 汪明武, 井合进, 飞田哲男. 栈桥式构筑物抗震性能动态离心模型试验的数值模拟[J]. 岩土工程学报, 2005, 27(7): 738-741. (WANG Ming-wu, IAI Susumu, TOBITA Tetsuo. Numerical modelling for dynamic centrifuge model test of the seismic behaviors of pile-supported structure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 738-741. (in Chinese))
    [11] JIA Y, TANG X W, LUAN M T, et al. Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2): 217-224.
    [12] 黄 雨, 郝 亮, 野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262. (HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262. (in Chinese))
    [13] HUANG Y, ZHANG W J, DAI Z L, et al. Numerical simulation of flow processes in liquefied soils using a soil-water-coupled smoothed particle hydrodynamics method[J]. Natural Hazards, 2013, 69(1): 809-827.
    [14] TANG X, SHAO Q. Numerical simulation on seismic liquefaction by adaptive mesh refinement due to two recovered fields in error estimation[J]. Soil Dynamics and Earthquake Engineering, 2013, 49(6): 109-121.
    [15] 张西文, 唐小微, 渦岡良介, 等. 砂土地震液化分析中 Newmark时域离散的误差评估[J]. 哈尔滨工程大学学报, 2015, 36(3): 322-326. (ZHANG Xi-wen, TANG Xiao-wei, UZUOKA Ryosuke, et al. Temporal discretization error for the Newmark scheme in sand liquefaction analysis[J]. Journal of Harbin Engineering University, 2015, 36(3): 322-326. (in Chinese))
    [16] 张西文, 唐小微, 渦岡良介. 液化场地堤坝地震响应的自适应步长法数值模拟[J]. 水利学报, 2014, 45(9): 1106-1113. (ZHANG Xi-wen, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation on seismic response of embankment on liquefiable sand using adaptive time stepping method[J]. Chinese Journal of Hydraulic Engineering, 2014, 45(9): 1106-1113. (in Chinese))
    [17] AKAI K, TAMURA T. Numerical analysis of multi- dimensional consolidation accompanied with elastic- plastic constitutive equation[C]// Proceedings of Japan Society of Civil Engineers. Wakayama, 1978: 95-104.
    [18] DI Y, SATO T. Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation[J]. Computers and Geotechnics, 2003, 30(7): 623-635.
    [19] ZHANG X W, TANG X W, SHAO Q, et al. The uplift behavior of large underground structures in liquefied field[C]// Applied Mechanics and Materials. Jinan, 2011: 2112-2118.
    [20] ZHANG X W, TANG X W, UZUOKA R. Numerical simulation of 3D liquefaction disasters using an automatic time stepping method[J]. Natural Hazards, 2015, 77(2): 1275-1287.
    [21] SLOAN S W, ABBO A J. Biot consolidation analysis with automatic time stepping and error control Part 1: Theory and implementation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(6): 467-492.
    [22] SHENG D, SLOAN S W. Time stepping schemes for coupled displacement and pore pressure analysis[J]. Computational Mechanics, 2003, 31(1/2): 122-134.
    [23] ZENG L F, WIBERG N E, LI X D. A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis[J]. Earthquake Engineering and Structure Dynamics, 1992, 21(7): 555-571.
    [24] ZHANG Z H, YANG Z J, LIU G H. An adaptive time-stepping procedure based on the scaled boundary finite element method for elastodynamics[J]. International Journal of Computational Methods, 2012, 9(1): 1-13.
    [25] TOBITA T, KAN G C, IAI S. Uplift behaviour of buried structures under strong shaking[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics 2010. Zurich, 2010: 1439-1444.
    [26] OKA F, YASHIMA A, TATEISHI A, et al. A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus[J]. Géotechnique, 1999, 49(5): 661-680.
  • 期刊类型引用(16)

    1. 加瑞,楚振兴. 地质聚合物加固软土的研究现状与进展. 硅酸盐通报. 2025(02): 490-500 . 百度学术
    2. 马丽媛,李滢,陈曦. 再生微粉和矿物掺合料对水泥浆体微观结构的影响研究. 青海大学学报. 2024(01): 24-31 . 百度学术
    3. 谷雷雷,张梅,邓先军,吉久发,于剑波,王盛年. 水泥复合偏高岭土稳定粉砂土力学特性试验研究. 地质与勘探. 2024(01): 148-155 . 百度学术
    4. 王志良,陈玉龙,申林方,施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制. 材料导报. 2024(08): 141-147 . 百度学术
    5. 黎宇,胡明鉴,郑思维,王志兵. 电石渣-矿渣固化膨胀土强度及微观机制研究. 岩土力学. 2024(S1): 461-470 . 百度学术
    6. 胡家宇,徐菲,钱文勋,肖怀前,葛津宇,李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理. 材料导报. 2024(17): 127-130 . 百度学术
    7. 韩瑞凯,陈宇鑫,张健,李召峰,王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响. 材料导报. 2024(22): 27-34 . 百度学术
    8. 何俊,管家贤,吕晓龙,张驰. 纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能. 硅酸盐通报. 2023(04): 1344-1352 . 百度学术
    9. 胡鑫,孙强,晏长根,赵春虎,王少飞. 陕北烧变岩水-岩作用的劣化特性. 煤田地质与勘探. 2023(04): 76-84 . 百度学术
    10. 何俊,管家贤,龙思昊. MgSO_4硅粉改良固化淤泥的渗透性能及孔隙特征. 水利水电技术(中英文). 2023(07): 218-226 . 百度学术
    11. 李丽华,韩琦培,杨星,肖衡林,李文涛,黄少平. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究. 土木工程学报. 2023(12): 166-176 . 百度学术
    12. 王伟,刘静静,李娜,马露. 纳米SiO_2改性滨海水泥土的短龄期力学性能与微观机制. 复合材料学报. 2022(04): 1701-1714 . 百度学术
    13. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 . 百度学术
    14. 王盛年,高新群,吴志坚,惠洪雷,张兴瑾. 水泥偏高岭土复合稳定粉砂土渗透特性试验研究. 岩土力学. 2022(11): 3003-3014 . 百度学术
    15. 李晓丽,赵晓泽,申向东. 碱激发对砒砂岩地聚物水泥复合土强度及微观结构的影响机理. 农业工程学报. 2021(12): 73-81 . 百度学术
    16. 徐长文,阮波. 冻融循环下纤维水泥改良风积沙NMR试验研究. 铁道科学与工程学报. 2021(09): 2289-2298 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  359
  • HTML全文浏览量:  4
  • PDF下载量:  220
  • 被引次数: 35
出版历程
  • 收稿日期:  2015-09-24
  • 发布日期:  2016-10-24

目录

    /

    返回文章
    返回