• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同加载速率下岩爆碎块耗能特征试验研究

苏国韶, 陈智勇, 蒋剑青, 莫金海, 石焱炯

苏国韶, 陈智勇, 蒋剑青, 莫金海, 石焱炯. 不同加载速率下岩爆碎块耗能特征试验研究[J]. 岩土工程学报, 2016, 38(8): 1481-1489. DOI: 10.11779/CJGE201608016
引用本文: 苏国韶, 陈智勇, 蒋剑青, 莫金海, 石焱炯. 不同加载速率下岩爆碎块耗能特征试验研究[J]. 岩土工程学报, 2016, 38(8): 1481-1489. DOI: 10.11779/CJGE201608016
SU Guo-shao, CHEN Zhi-yong, JIANG Jian-qing, MO Jin-hai, SHI Yan-jiong. Experimental study on energy dissipating characteristics of rockburst fragments under different loading rates[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1481-1489. DOI: 10.11779/CJGE201608016
Citation: SU Guo-shao, CHEN Zhi-yong, JIANG Jian-qing, MO Jin-hai, SHI Yan-jiong. Experimental study on energy dissipating characteristics of rockburst fragments under different loading rates[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1481-1489. DOI: 10.11779/CJGE201608016

不同加载速率下岩爆碎块耗能特征试验研究  English Version

基金项目: 国家自然科学基金项目(41472329)
详细信息
    作者简介:

    苏国韶(1973- ),男,教授,博士生导师,主要从事水利工程安全研究方向。E-mail: suguoshao@163.com。

Experimental study on energy dissipating characteristics of rockburst fragments under different loading rates

  • 摘要: 利用自主研发的真三轴岩爆试验系统,以红色粗晶花岗岩作为岩石长方体试件,开展了不同加载速率的应变型岩爆室内模拟试验,在提出一种岩爆碎块单位面积表面能测定方法的基础上,结合应力-应变曲线分析,实现了岩爆碎块耗能组成的定量化分析,进而探讨了不同轴向加载速率下岩爆碎块的耗能特征。研究结果表明:①在单面临空真三轴压缩条件下,只有在足够大的轴向加载速率下,岩样集聚一定的弹性应变能并通过岩板劈裂以及潜在岩爆坑等岩爆碎块的形成耗散适当能量,岩爆弹射破坏才可能发生;②在0.5~30 kN/s加载速率范围内,随着加载速率的增大,碎块破碎程度呈降低趋势,碎块耗能呈线性减小趋势;③不同加载速率下的岩爆碎块中,片状粗粒碎块主要来自岩爆坑表面,主要为张拉破坏所致,棱块状的中粒碎块、细粒碎块,粉末状的微粒碎块主要来自岩爆坑内部,主要为剪切破坏所致;④不同加载速率下,岩爆碎块耗能均以剪切耗能为主,剪切耗能的百分比达到97%~99%。
    Abstract: The experiments on coarse-grain cuboid granite are performed for simulating ejection process of strain rockburst under different loading rates by using self-developed triaxial rockburst test system. Based on a new method for measuring surface energy per unit area, the quantitative analysis of energy dissipation of rockburst fragments is realized by with analyzing the stress-strain curve. Then energy dissipating characteristics of rockburst fragments under different loading rates are studied. The experimental results show that: (1) Under the triaxial compression with one single free face, rockburst ejection occurs when some conditions are met including that the vertical loading rate exceeds a certain rate, gathering enough elastic strain energy and dissipating proper energy through rock splitting on the surface of the free face and rock shearing in potential rockburst near the free face. (2) With the increase of loading rates ranging from 0.5~30 kN/s, the broken degree of rockburst fragments linearly declines. (3) Among the fragments under different loading rates, the coarse sheet fragments mainly come from surface of rockburst notch and are created by tension failure, and the medium-granular, fine-grained prismatic fragments and powdery tiny fragments mainly come from the interior of rockburst notch and are created by shear failure. (4) Under different loading rates, energy dissipation is mainly caused by shearing, and the percentage of energy dissipation caused by shearing reaches about 97% to 99%.
  • [1] 冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013: 1-3. (FENG Xia-ting, CHEN Bing-rui, ZHANG Chuan-qing, et al. Mechanism warning and dynamic control of rockburst development processes[M]. Beijing: Science Press, 2013: 1-3. (in Chinese))
    [2] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. (QIAN Qi-hu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese))
    [3] 李天斌, 王湘锋, 孟陆波. 岩爆的相似材料物理模拟研究[J]. 岩石力学与工程学报, 2011, 30(1): 2610-2616. (LI Tian-bin, WANG Xiang-feng, MENG Lu-bo. Physical simulation study of similar materials for rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 2610-2616. (in Chinese))
    [4] 陈陆望, 白世伟, 殷晓曦, 等. 坚硬岩体中马蹄形洞室岩爆破坏平面应变模型试验[J]. 岩土工程学报, 2008, 30(10): 1520-1526. (CHEN Lu-wang, BAI Shi-wei, YIN Xiao-xi, et al. Plane-strain model tests on rock-burst of horseshoe section caverns in hard and brittle rockmass[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1520-1526. (in Chinese))
    [5] SHIVAKUMAR K, RAO M V M S, SRINIVASAN C, et al. Multifractal analysis of the spatial distribution of area rockbursts at Kolar Gold Mines[J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(2): 167-172.
    [6] 李廷芥, 王耀辉, 张梅英, 等. 岩石裂纹的分形特征及岩爆机制研究[J]. 岩石力学与工程学报, 2000, 19(1): 6-10. (LI Ting-jie, WANG Yao-hui, ZHANG Mei-ying, et al. Fractal characteristics of rock cracks and the study of rockburst mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(1): 6-10.(in Chinese))
    [7] 谢和平, 高 峰, 周宏伟, 等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程学报. 2003, 23(4):1-9. (XIE He-ping, GAO Feng, ZHOU Hong-wei, et al. Fractal fracture and fragmentation in rocks[J]. Chinese Journal of Disaster Prevention and Mitigation Engineering. 2003, 23(4):1-9.(in Chinese))
    [8] 何满潮, 苗金丽, 李德建, 等. 深部花岗岩试样岩爆过程试验研究[J]. 岩石力学与工程学报, 2007, 26(5): 865-876. (HE Man-chao, MIAO Jin-li, LI De-jian, et al. Experimental study of rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 865-876.(in Chinese)).
    [9] 李德建, 贾雪娜, 苗金丽, 等. 花岗岩岩爆试验碎屑分形特征分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3280-3289. (LI De-jian, JIA Xue-na, MIAO Jin-li,et al. Analysis of fractal characteristics of fragmentation from rockburst test of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3280-3289. (in Chinese))
    [10] 马艾阳, 伍法权, 沙 鹏, 等. 锦屏大理岩真三轴岩爆试验的渐进破坏过程研究[J]. 岩土力学, 2014, 35(10): 2868-2874. (MA Ai-yang, WU Fa-quan, SHA Peng, et al. Progressive failure of Jinping marble in true triaxial rockburst test [J]. Rock and Soil Mechanics, 2014, 35(10): 2868-2874. (in Chinese))
    [11] 夏元友, 吝曼卿, 廖璐璐, 等. 大尺寸试件岩爆试验碎屑分形特征分析[J]. 岩石力学与工程学报, 2014, 33(7): 1358-1365. (XIA Yuan-you, LIN Man-qing, LIAO Lu-lu, et al. Fractal characteristic analysis of fragments from rockburst tests of large-diameter specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1358-1365. (in Chinese))
    [12] 陈卫忠, 吕森鹏, 郭小红, 等. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 2010, 32(6): 963-969. (CHEN Wei-zhong, LÜ Sen-peng, GUO Xiao-hong, et al. Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 963-969. (in Chinese))
    [13] LI X J, YANG W M, WANG L G, et al. Displacement forecasting method in brittle crack surrounding rock under excavation unloading incorporating opening deformation [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2211-2223.
    [14] YANG H Q, ZENG Y Y, LAN Y F. Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69(6): 59-66.
    [15] HE Man-chao, MIAO Jin-li, FENG Ji-li. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47: 286-98.
    [16] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制:即时型岩爆[J]. 岩石力学与工程学报, 2012, 31(12): 433-443. (FENG Xia-ting, CHEN Bing-rui, MING Hua-jun, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 433-443. (in Chinese))
    [17] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1997. (XIE He-ping. Fractal and rock mechanics introduction[M]. Beijing: Science Press, 1997. (in Chinese))
    [18] 邓 涛, 杨林德, 韩文峰. 加载方式对大理岩碎块分布影响的试验研究[J]. 同济大学学报 (自然科学版), 2007, 35(1): 10-14. (DENG Tao, YANG Lin-de, HAN Wen-feng. Influence of loading form on distribution of marble fragments[J]. Journal of Tongji University (Nature Science), 2007, 35(1): 10-14. (in Chinese))
  • 期刊类型引用(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 . 百度学术
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 . 百度学术
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 . 百度学术
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 . 百度学术
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 . 百度学术
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 . 百度学术
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 . 百度学术
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 . 百度学术
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 . 百度学术
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 . 百度学术
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 . 百度学术
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 . 百度学术
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 . 百度学术
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 . 百度学术
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 . 百度学术
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 . 百度学术
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 . 百度学术
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 . 百度学术
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 . 百度学术
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 . 百度学术
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 . 百度学术
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 . 百度学术

    其他类型引用(43)

计量
  • 文章访问数:  345
  • HTML全文浏览量:  2
  • PDF下载量:  323
  • 被引次数: 65
出版历程
  • 收稿日期:  2015-07-12
  • 发布日期:  2016-08-24

目录

    /

    返回文章
    返回